

Institutions for irrigation water management, irrigation technologies and their impact on irrigation performance in Ethiopia Rahel Deribe Bekele, PhD Candidate Center for Development Research (ZEF), University of Bonn



## Introduction

The Ethiopian Government has considered irrigation agriculture as a primary engine of economic growth in general and to the rural economy in particular. Due to its multidimensional benefits, the government plans to increase the current level of irrigation infrastructure three-fold by the end of 2020<sup>1</sup>. However, there has been a concern regarding the performance of existing irrigation systems. More emphasis has been given to technical and engineering factors, the social and institutional dimensions of irrigation management have been usually neglected or handled badly <sup>2, 3</sup>.

•Applying ordinal logit model, we analyze factors which affect irrigation performance, taking farmers' satisfaction level in using and managing irrigation water as an indicator. The model has been used widely to analyze ranked responses<sup>4</sup>.

## **Qualitative Analysis**

Our findings show that even if the policies, strategies and the legal instruments are very well specified, and the relevant institutions and organizations have been established at federal, regional and local level;

#### **Regression Result**

•In addition to household, plot and village level characteristics, water management systems and irrigation technologies significantly affect the performance of irrigation.

| Table 2. Ordered logit, the marginal partial effects of various irrigation |               |             |            |           |       |  |  |  |  |  |
|----------------------------------------------------------------------------|---------------|-------------|------------|-----------|-------|--|--|--|--|--|
| technologies and management sysyems on Farmers' satsfaction                |               |             |            |           |       |  |  |  |  |  |
| Scheme                                                                     | <b>y</b> =    | <b>y</b> =  | <b>y</b> = | y =       | Odds  |  |  |  |  |  |
| level                                                                      | Pr(SATI_LEV   | Pr(SATI_LEV | Pr(SATI_LE | Pr(SATI_L | ratio |  |  |  |  |  |
| variables                                                                  | EL==very      | EL==dissats | VEL==satis | EVEL==ve  |       |  |  |  |  |  |
|                                                                            | dissatisfied) | fied)       | fied)      | ry        |       |  |  |  |  |  |
|                                                                            |               |             |            | satisfied |       |  |  |  |  |  |

## **Objective of the Study**

Thus, the current study has two interlinked objectives

(i)to understand the nature and diversity of irrigation technologies and water management systems at different levels and identify the existing gaps in the sector and

(ii)to investigate the determinants of irrigation performance and farmers' satisfaction in using and managing irrigation water.

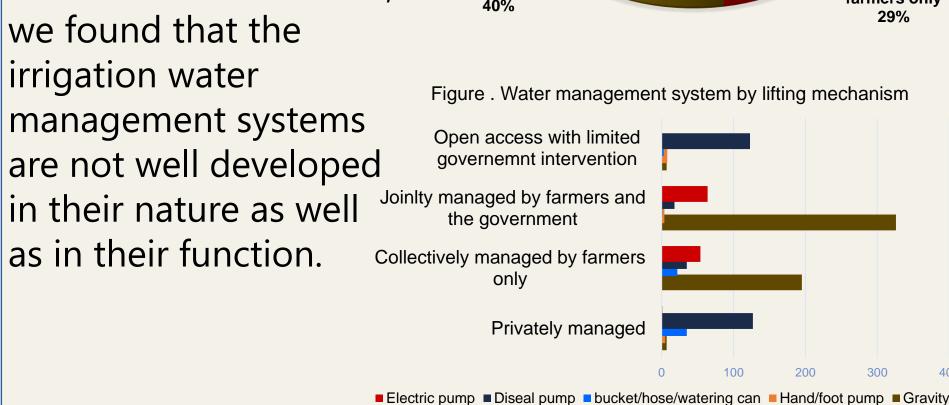
## Method

Our analysis utilizes a comprehensive and unique household and plot-level survey conducted in ten districts of the country. In addition, focus group discussion and key informant interview was conducted to gather qualitative approach.

- ✓ there has been weak enforcement capacity among executed organizations at each level;
- $\checkmark$  the current information sharing mechanisms in place do not ensure institutional harmony and efficient information and resource flows;
- ✓ horizontal and vertical communications between ministries and bureaus belonging to different sectors is very weak.
- $\checkmark$  Thus, organizations of ministries, bureaus and departments attempt to fulfill their responsibilities without an interdisciplinary and integrated approach which is fundamental in the field of water resource management at each level.

| Descri                                                                           | ptive Analysis                                                                                                  |                                            |
|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| At local level, in spite of<br>the existence of<br>diversified types of<br>water | FIGURE 2.DIVERSITY<br>IRRIGATION WATER W<br>Open<br>access with<br>limited<br>governemnt<br>intervention<br>14% | IANAGEMENT                                 |
| management systems<br>and related institutions,                                  | Jointly<br>managed:                                                                                             | Collectively<br>managed by<br>farmers only |

| Water Mana                                                                  | anagement System, dummy., cf, Jointly managed by farmers |           |          |              |          |  |
|-----------------------------------------------------------------------------|----------------------------------------------------------|-----------|----------|--------------|----------|--|
| and state age                                                               | d state agency                                           |           |          |              |          |  |
| Private                                                                     | -0.042                                                   | -0.157**  | 0.021    | 0.178**<br>* | 0.403**  |  |
| Collectively<br>managed by<br>farmers                                       | -0.044***                                                | -0.173*** | 0.008    | 0.209**<br>* | 0.357*** |  |
| Open<br>access                                                              | -0.057                                                   | -0.192**  | 0.045    | 0.204**<br>* | 0.330**  |  |
| Irrigation wa                                                               |                                                          |           |          |              |          |  |
| Manual                                                                      | -0.024***                                                | -0.137    | -0.091*  | 0.252**<br>* | 2.842*** |  |
| Diesel<br>pump                                                              | -0.023***                                                | -0.119*** | -0.042*  | 0.184**<br>* | 2.214*** |  |
| Electric<br>pump                                                            | 0.0139                                                   | 0.0604    | 0.0012   | -0.0754      | 0.6993   |  |
| Irrigation water source structure, dummy., cf, River                        |                                                          |           |          |              |          |  |
| Dam                                                                         | 0.066***                                                 | 0.213***  | -0.05*   | -0.23***     | 0.29***  |  |
| Pond                                                                        | 0.0379                                                   | 0.136     | -0.0273  | -0.1466      | 0.4611   |  |
| Ground<br>water                                                             | -0.0096                                                  | -0.047    | -0.0104  | 0.067        | 1.3457   |  |
| Spring<br>water                                                             | 0.057**                                                  | 0.185***  | -0.0522  | -0.19***     | 0.345*** |  |
| Irrigation water application mechanism on the plot, dummy., cf,<br>flooding |                                                          |           |          |              |          |  |
| Sprinkler                                                                   | -0.018**                                                 | -0.098*   | -0.052   | 0.168        | 2.0174   |  |
| Drip                                                                        | -0.027***                                                | -0.155*** | -0.123** | 0.305**<br>* | 3.547*** |  |


- Irrigation is considered as a sociotechnical system. This approach highlights on the social dimensions of irrigation as important as the technical dimensions.
- Nested analytical framework was employed to examine the existing institutional arrangements related to irrigation water



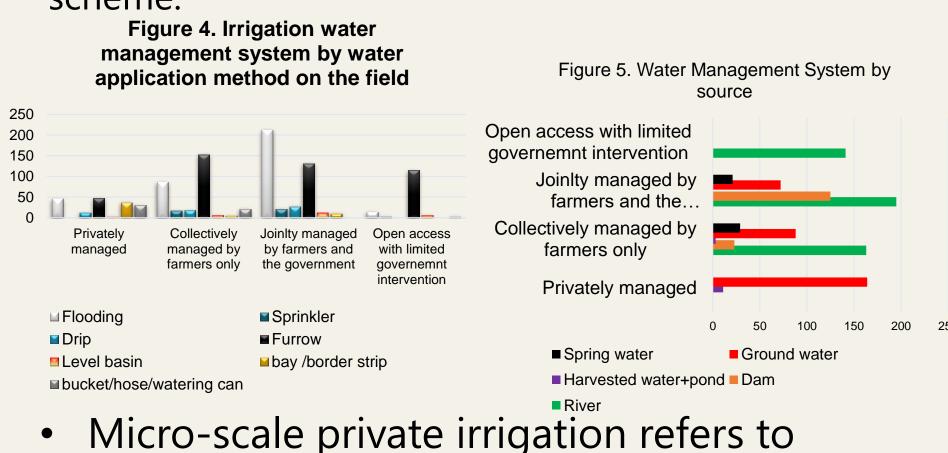

development and management.

Table. 1. Salient features of irrigation schemes included in the study

|        | No. of Scale of Total No. |          |                          |      | No. of         |              |                 |                    |
|--------|---------------------------|----------|--------------------------|------|----------------|--------------|-----------------|--------------------|
| Region | Zones<br>included         | District | Agro-<br>ecological zone | sub- | irrigatio<br>n | No. of<br>hh | no. of<br>plots | irrigated<br>plots |
| 0      |                           |          | Drought                  |      |                |              | •               | •                  |
|        | East                      | Atsebi   | prone                    |      | Small,         |              |                 |                    |
| Tigray | Tigray                    | Wemberta | highland                 | 2    | Micro          | 51           | 188             | 66                 |
|        | Couth                     | Dava     | Drought<br>prone         |      | Small          |              |                 |                    |
|        | South                     | Raya     | highland,                | Л    | Small,         | 40           | 140             | 70                 |
|        | Tigray                    | Alamata  | lowland<br>Drought       | 4    | Micro          | 49           | 148             | 72                 |
|        |                           |          | prone                    |      | Large,         |              |                 |                    |
|        | North                     | Raya     | highland,                |      | Small,         |              |                 |                    |
| Amhara | Wollo                     | Kobo     | lowland                  | 2    | Micro          | 38           | 166             | 78                 |
|        | VVOIIO                    | NODU     | Drought                  | 2    | WIICIU         | 50           | 100             | 70                 |
|        |                           |          | prone                    |      | Large,         |              |                 |                    |
|        |                           | Raya     | highland,                |      | Small,         |              |                 |                    |
|        |                           | town     | lowland                  | 2    | Micro          | 27           | 98              | 41                 |
|        |                           |          | Moisture                 | 2    |                | 21           | 50              |                    |
|        |                           |          | reliable,                |      | Large,         |              |                 |                    |
|        | East                      |          | highland-                |      | Small,         |              |                 |                    |
|        | Gojjam                    | Mecha    | Cereal                   | 2    | Micro          | 66           | 337             | 170                |
|        | Cojjan                    |          | Moisture                 | 2    |                | 00           | 007             | 170                |
|        | South                     |          | reliable,                |      |                |              |                 |                    |
|        | West                      |          | highland-                |      | Small,         |              |                 |                    |
| Oromia | Shoa                      | Illu     | Cereal                   | 8    | Micro          | 60           | 364             | 130                |
|        |                           |          | Moisture                 |      | Mediu          |              |                 |                    |
|        |                           |          | reliable,                |      | m,             |              |                 |                    |
|        |                           |          | highland-                |      | Small,         |              |                 |                    |
|        |                           | Wonchi   | Cereal                   | 2    | Micro          | 50           | 275             | 86                 |
|        |                           |          | Humid                    |      |                |              |                 |                    |
|        |                           |          | moisture                 |      |                |              |                 |                    |
|        |                           |          | reliable,                |      |                |              |                 |                    |
|        | Arsi                      | Sire     | lowland                  | 1    | Large          | 12           | 48              | 37                 |
|        |                           |          | Humid                    |      |                |              |                 |                    |
|        |                           |          | moisture                 |      |                |              |                 |                    |
|        |                           |          | reliable,                |      |                |              |                 |                    |
|        |                           | Jeju     | lowland                  | 1    | Large          | 8            | 30              | 17                 |
|        |                           |          | Moisture<br>reliable,    |      |                |              |                 |                    |
|        |                           | Wondo    | highland -               |      | Small,         |              |                 |                    |
| SNNPR  | Sidama                    | Genet    | Enset                    |      | Micro          | 103          | 512             | 294                |
| 4      | 7                         | 10       |                          | 26   |                | 464          | 2166            | 991                |



- Jointly managed irrigation system- government agency manages the main and secondary canals and farmers manage the tertiary units and beyond.
- Users managed system- the farmers and the WUA have full control and responsibility from inception to the construction and implementation of the scheme.



| Furrow | -0.025*** | -0.11*** | -0.014* | 0.151** | 1.99*** |
|--------|-----------|----------|---------|---------|---------|
|        |           |          |         | *       |         |

# **Concluding Remarks**

•Our findings show that at each level, Institutions, organizations and technology play a fundamental role on the performance of irrigation systems. Therefore, emphasis should be given on:

- Capacity building and stakeholders participation at each level,
- technical assistance for farmers,
- Dublic-Private Partnership,
- ✓ Cost recovery of schemes

•The best starting point to enforce the new Proclamation on IWUA, could be to learn from the success of traditional irrigation systems.

Since irrigation water users have long years of experience of using water. It would provide important insights as to how to organize and develop modern irrigation associations.

•Even if enormous priority given to acquiring and using micro level water lifting technologies,

- appropriate and accessible repair and maintenance services for farmers is essential.
- consideration is need serious for the  $\checkmark$

individualized small-scale technologies for storing, lifting, conveying and applying irrigation water. • Open access with limited government intervention -those who have farm land adjacent to a river or spring water which

there have been hardly any developed irrigation structure, access irrigation without any schedule or turn.



Figure 8. Sprinkler irrigation

sustainability use of the natural resource.

# Acknowledgements

We gratefully acknowledge the financial support of the German Academic Exchange Service (DAAD), foundation Fiat Panis and The Water-Energy-Food Nexus Project hosted at Center for Development Research (ZEF).

# Reference

<sup>1</sup>FDRE (Federal Democratic Republic of Ethiopia). 2016, Growth and Transformation Plan II (GTP II 2015/16-2019/20, Volume I Main Text Addis Ababa, Ethiopia <sup>2</sup>Gebremedhin B, Pedon D., (2002), Policies and institutions to enhance the impact of irrigation development in mixed crop-livestock system., Proceedings of MoWR/EARO/IWMI/ILRI International Workshop held at ILRI, Addis Ababa, Ethiopia, 2-4 December;168-184.

<sup>3</sup>Haileslassie, A., Hagos, F., Agide, Z., Tesema, E., Hoekstra, D. and Langan, S. 2016. Institutions for irrigation water management in Ethiopia: Assessing diversity and service delivery. LIVES Working Paper 17 Nairobi, Kenya: International Livestock Research Institute (ILRI).

<sup>4</sup> Greene, W.H. and Hensher, D.A. (2010) Modeling Ordered Choices: A Primer and Recent Developments, Cambridge University Press, Cambridge.