
Quality parameters of walnut (Juglans regia L.) fruits from Kyrgyzstan as affected by abiotic properties and intraspecific variability Meisen S.¹, Wolk K.¹, Perl E.¹, Grätz A.¹, Smanalieva J.², Oskonbaeva Z.², Darr D.¹ and Wichern F.¹ Background **Research Questions** &

• Unique diversity of walnut fruits in Kyrgyz walnut forests

- Lack of alternative income opportunities
 - \rightarrow overexploitation
 - \rightarrow degradation of forests

• Adding value:

- 1. How do physical and biochemical nut quality parameters compare internationally?
- 2. To what extend do site factors and intraspecific variability influence nut quality?

 \rightarrow walnut fruit quality has hardly been investigated

in the context of abiotic factors & genetic variability

3. How do results of the present study refer to forest

management?

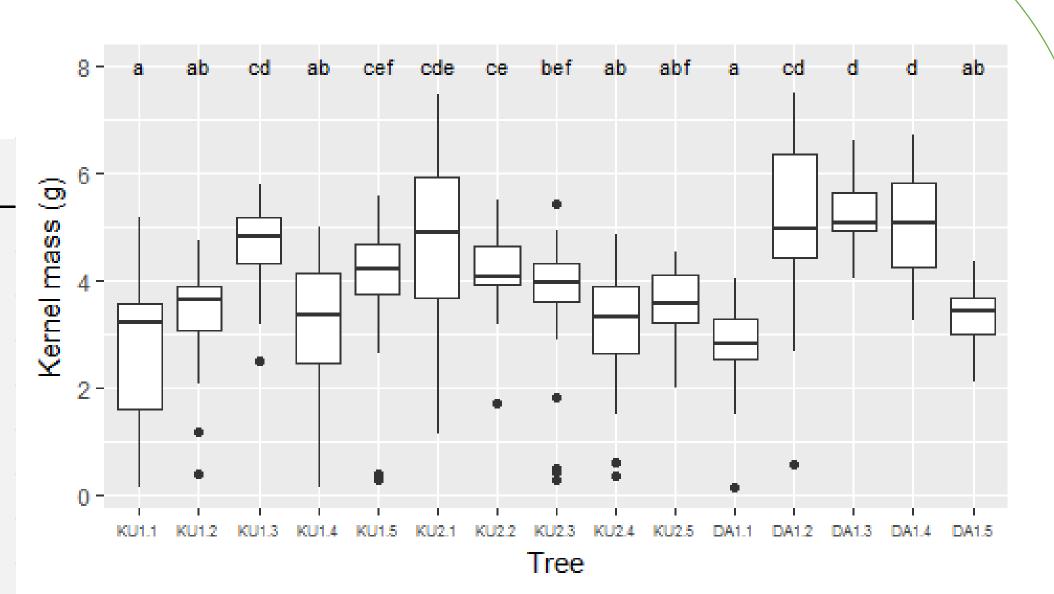

Results

Table 1: Physical quality parameters of wild Juglans regia from Bazar-Korgon, Kyrgyzstan

Means and standard deviations of n = 5 trees, for each tree 25 nuts were examined and averaged; no significant differences were found (p > 0.1)

chemical component											
ash	Parameter		ΚL	J1		K	J2		DA	\1	
residual moisture carbohydrates	length (cm)	3.2	±	0.1	3.1	±	0.2	3.3	±	0.4	
crude protein fat	width (cm)	2.8	±	0.2	2.9	±	0.2	2.9	±	0.3	
	thickness (cm)	2.9	±	0.1	2.9	±	0.1	3.0	±	0.3	
	Dg (cm)	2.9	±	0.1	3.0	±	0.1	3.0	±	0.3	
	spericity	92.6	±	2.8	96.1	±	4.2	93.9	±	5.4	
otal weight	nut mass(g)	8.3	±	1.5	8.0	±	1.1	9.0	±	2.2	
	kernel mass (g)	3.6	±	0.7	3.8	±	0.6	4.3	±	1.1	
	KMP (%)	42.3	±	4.3	46.4	±	2.0	46.7	±	1.6	
	rupture force (N)	268.2	±	90.0	227.5	±	54.6	273.6	±	55.3	

Dg - nut geometric mean diameter; KMP - kernel mass proportion; KU1, KU2, DA1 - sampling sites

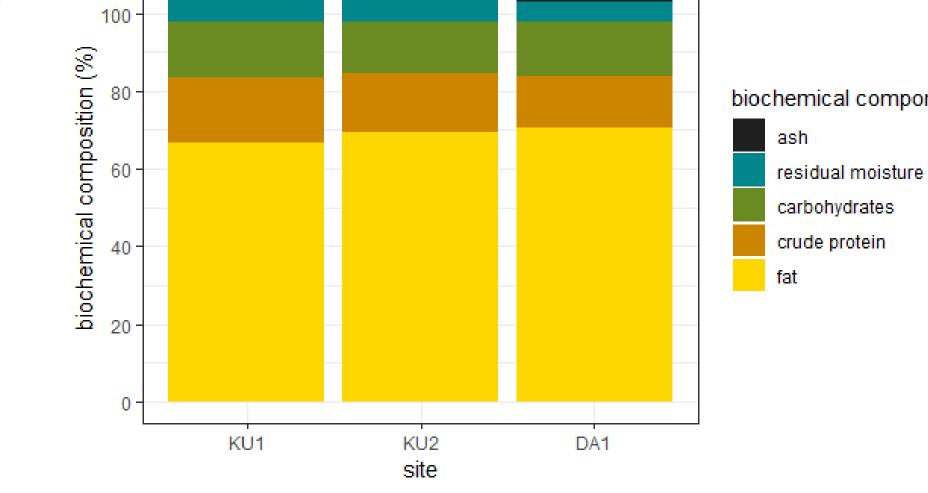

and Research

Figure 2: Tree-specific distribution of *J. regia* kernel mass

n = 25 walnut fruits per tree; 5 trees per site KU1, KU2, DA1 were examined; letters indicate significance groups

Figure 1: Biochemical composition [%] of the total weight of wild Juglans regia from Bazar-Korgon, Kyrgyzstan

Mean values in % of the total weight; n = 5 trees per sampling site KU1, KU2, DA1; subsamples of 25 nut kernels per tree for each component were examined

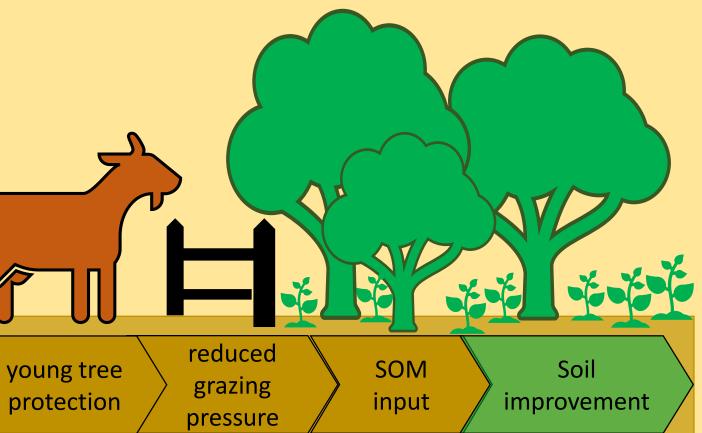
1. Nut Quality Parameters

Kyrgyz walnut fruits:

- ✓ show an equal biochemical composition
- x smaller nuts & lower kernel yield

2. Genetics or Site Factors?

- Nut quality is highly attributed to genetic variability
- Nut quality does not differ site-specifically


3. Forest Management

• Low soil organic matter due to overuse

Conclusion

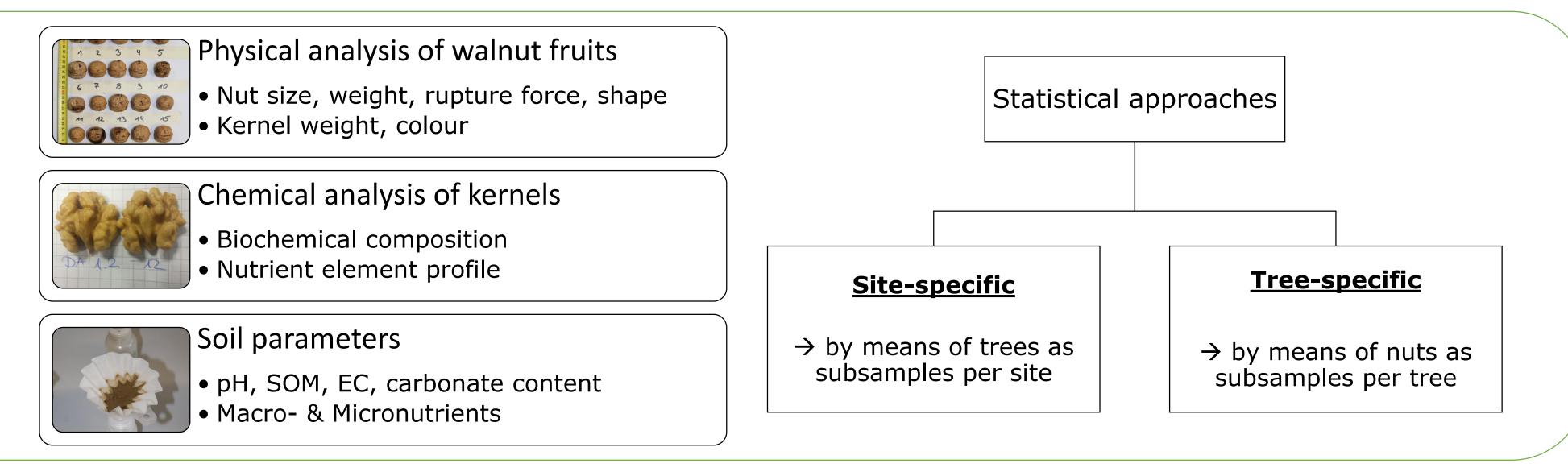
- Kyrgyz walnut fruit quality:
- Cannot compete
- internationally
- o <u>but</u>: nutritious food source

Private selection & cultivation:

Figure 3: Impact of private tree cultivation SOM - soil organic matter

 increases nut quality benefits local livelihoods fosters forest conservation maintains genetic diversity of the walnuts

Materials & Methods


Sampling:

3 sampling sites KU1, KU2, DA1

• 5 trees per sampling site

25 walnut fruits per tree

 \circ Soil samples of 0 – 30 and 30 – 60 cm under each tree

Contact

Sabrina-Alica.Meisen@hsrw.org

Florian.Wichern@hochschule-rhein-waal.de

¹Rhine-Waal University of Applied Sciences, Faculty of Life Sciences, Kleve, Germany ² Kyrgyz-Turkish Manas University, Facultiy of Engineering

References

Sakbaeva, Z., Schroetter, S., Karabaev, N., Avazov, A., Rogasik, J., Schnug, E. 2013. Soils of nut-fruit forests in southern Kyrgyzstan – important ecosystems worthy of protection. Applied Agricultural and Forestry Research, 93.

Jalilova, G., Khadka, C., Vacik, H. 2012. Developing criteria and indicators for evaluating sustainable forest management: A case study in Kyrgyzstan. Forest Policy and Economics, 21, 32-43.

Acknowledgements

The project is financially supported by the German Federal Ministry of Education and Research (BMBF), which we gratefully acknowledge.

Poster presented at the Tropentag conference, 17 - 19. September, 2018. Ghent, Belgium

