

Institute of Agricultural Sciences in the Tropics (Hans-Ruthenberg-Institute) (490)

The effect of fertilizer rates and splits on lowland rice grown in two temperature environments in Rwanda

Boshuwenda Chuma Andre^{*1,3}, Kalisa Alain³, Senthilkumar Kalimuthu², Arisoa Rajaona², Marc Cotter¹, Folkard Asch¹

(1) University of Hohenheim, Management of Crop Water Stress in the Tropics and Subtropics (490g);
(2) The Africa Rice Center; (3) Rwanda Agriculture Board

Introduction

Even though significant differences in the thermal growth environment for rice cultivars

TGW (g)

35.0 a

Conclusion

 Application of basal N results in lower yields at high altitude.

grown at the different altitudes are acknowledged, official fertilizer application recommendations often do not reflect this. The consequence is a mismatch between nutrient requirements in specific growth stages of the plant and fertilizer application strategies.

- It can lead to a high number of unproductive tillers and/or a lower number of spikelets per panicle.
- Basal N decreased yield component's direct effects on grain yield.

30.2 a

28.9 b

Results and Discussion

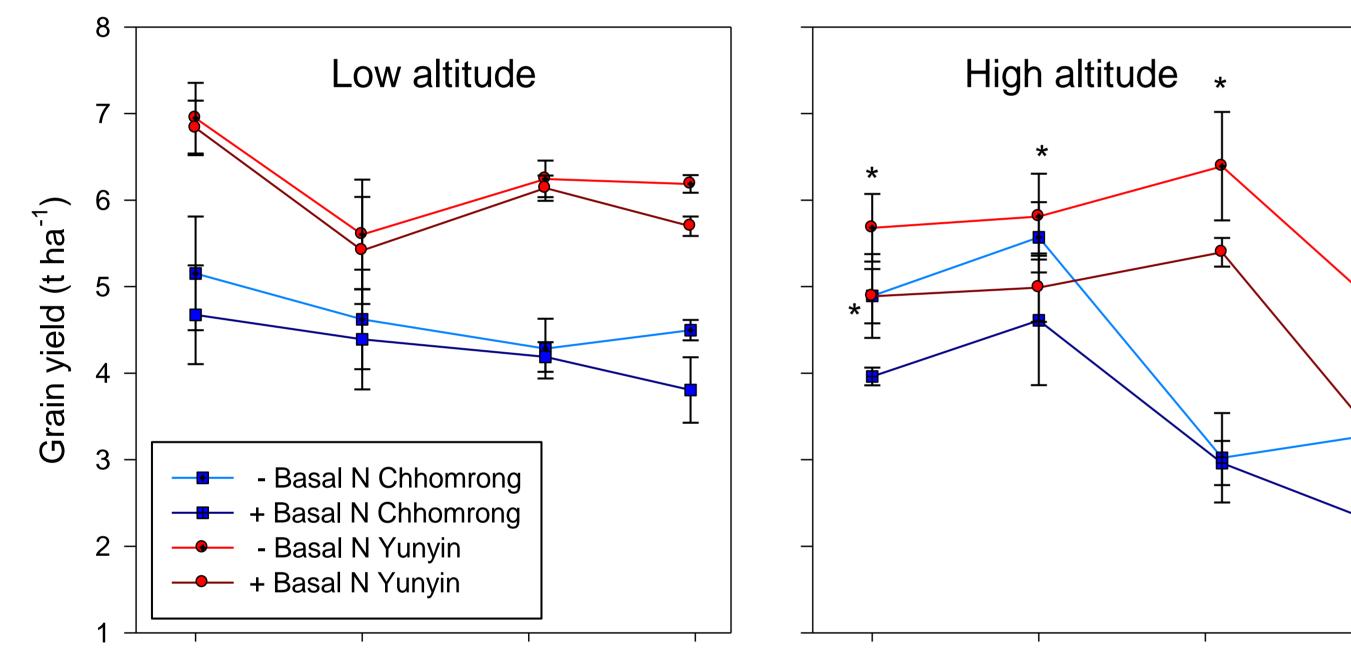


Table1: Yield components as affected by application of basal N at high altitude during the second sowing date. Letters are mean separation with LSD.

	Chhomrong		Yunyin	
	- Basal N	+Basal N	- Basal N	+ Basal N
TPH	14.6 a	13.7 a	13.7 a	14.3 b
PPT (%)	81.0 a	80.0 a	84.6 a	78.8 b
SPP	74.7 a	66.5 b	91.1 a	76.3 b
PFS (%)	82.8 a	73.0 b	80.4 a	78.9 a

33.8 b

February 2016 July 2016 January 2017 April 2017 February 2016 July 2016 January 2017 April 2017

Sowing date Sowing date Fig. 1 Grain yield of two genotypes as affected by N splits at low and high altitudes. (*) indicates significant difference. Bars are standard errors.

- Grain yield was negatively affected by application of basal N at high altitude (Figure 1)
- Farmers should adapt their fertilizer management
- Grain yield variation is higher at high than low altitude
- Flexible sowing schedule at low altitude is possible
- Basal N application decreased PPT, SPP, PFS and TGW (Table 1)
- Higher TPH and PFS directly effect grain yield with postponed basal N at tillering and panicle initiation stages (Figure 2)
- Basal N should be postponed to tillering and panicle initiation stages to reduce unproductive tillers

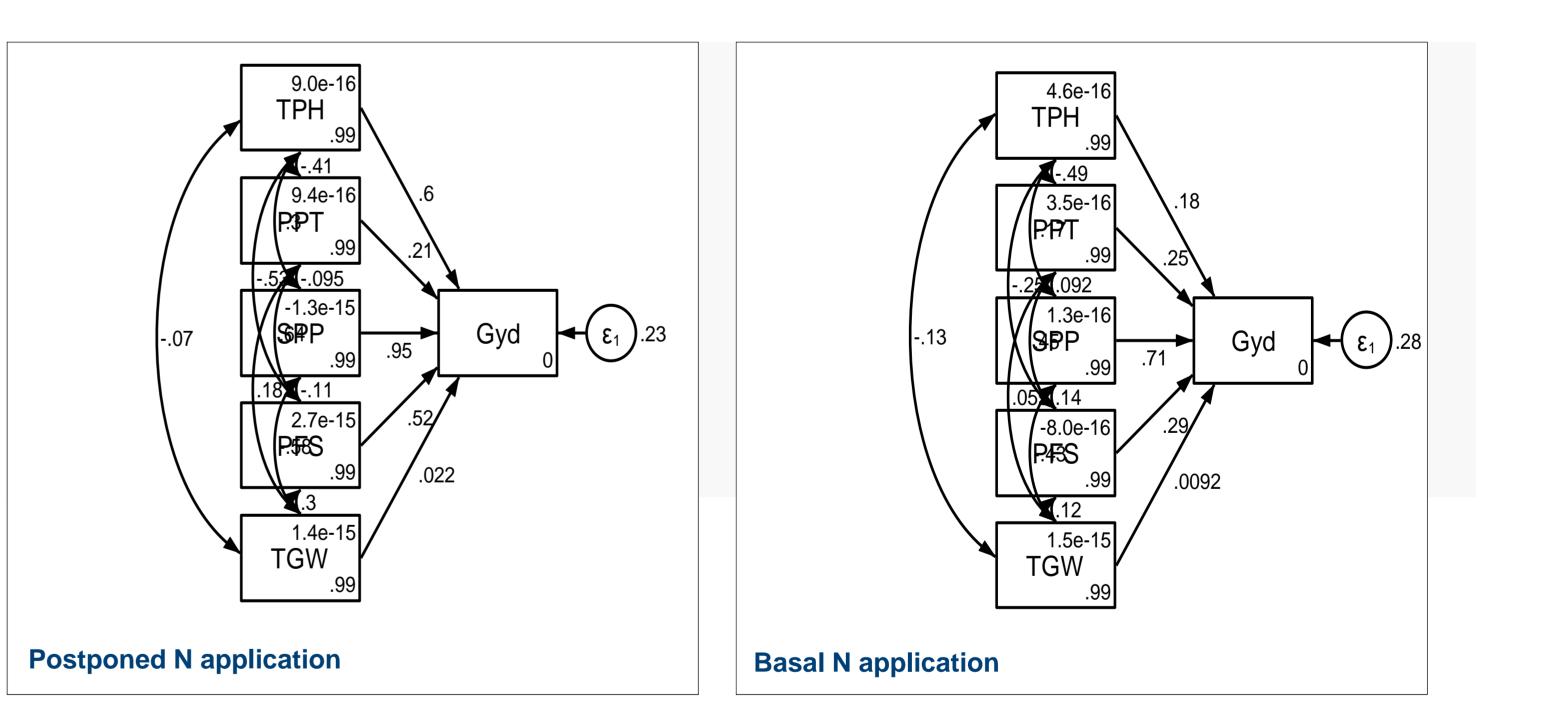


Fig. 2 Path analysis diagram by splits at high altitude; postponed N application (left) and basal N application (right). Abbreviations: Gyd, grain yield; TPH, tillers per hill, PPT, percentage of panicles per tiller; SPP, spikelets per panicle; PFS, percentage of filled spikelets; TGW, thousand grain weight. Arrows and values towards Gyd indicate direct effects of a yield component on grain yield.

Material and Methods

This experiment was conducted in two marshlands located at 1600 and 900 m asl in Rwanda. Fertilizer treatments consisted of three N rates (80,120 and 160 kg ha⁻¹) in two splits, with and without delayed basal application. Climatic data were recorded at 30 minutes interval with mini meteorological stations placed at the experimental sites. Panicles were hand-harvested at maturity stage from an averaged 3-hill sample in each subplot for the quantification of yield components. P and K rates of 30, 40 and 60 and kg ha⁻¹ were applied to the plots which received total N rates of 80, 120 and 160 kg ha⁻¹ respectively. Two contrasting genotypes, Chhomrong and Yunyin were used for this study.

Tropentag 2018, Ghent University, Belgium

