

Appropriate agricultural mechanization for increased crop productivity and income generation in rural Ethiopia

Rabe Yahaya, Ephrem Tadesse, Walter Mupangwa

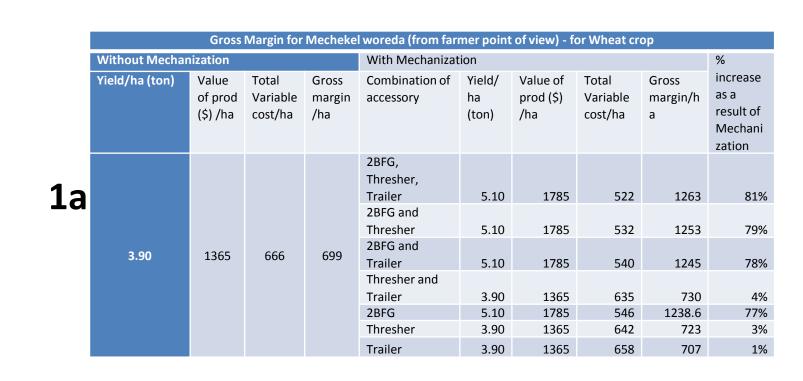
CIMMYT (International Maize & Wheat Improvement Centre)

Objectives

- 1. To conduct an economic analysis of the impact of mechanization hire services on smallholder farmers;
- 2. To conduct a cost-benefit analysis from the perspective of the hire service provider under different scenarios of hire service operations and
- 3. To calculate the break-even points/hour for each machinery.

Methodology and Material

- Appropriate 2WT power source based technologies defined for 3 regions (Adwa, Bako and Debre Markos)
- In partnership with the Ethiopian Institute of Agricultural Research and manufacturers/dealers, technologies have been adapted, designed and tested, validated at farmers level
- Service provider business scheme developed and implemented in 3 regions (Amhara, Oromia and Tigray)
- Research inputs include: 2WT, trailer, direct seeders, thresher, sheller, water pump, reaper harvester
- Trials farms under mechanization versus non-mechanized treatments
- Book record of daily executed activity (fix and variables costs, income and profit)
- Calculation of gross margins per hectare with and without 2WT mechanization of 2WTs and implements.


Results and Discussions

- Maize and wheat growing farmers can generate a higher and positive gross margin by hiring 2WT based technologies (Tables 1 & 2).
- The higher gross margin resulted from: 1.) the reduction of cost on ploughing, planting, fertilizer application, threshing and transportation and 2.) the use of 2WTs direct seeder.
- The more range of machineries the farmers (SPs) use the higher the gross margin.
- The direct seeder takes a bigger share in terms of increasing the gross margin (77%, 52% and 45%) by reducing the cost of production and increasing productivity (for wheat) for Mechekel, Adwa and Gudeya Billa woredas, respectively.
- The difference in gross margin among the three-region resulted from; a) difference in crop type (the gross margin for wheat is higher than maize); b) difference in operation costs of without mechanization and c) farm productivity and contract charge per ha is also another factor for gross margin difference.
- Knowing machinery (Figure 1) with better gross margin helps farmers to decide or prioritize.
- From hire service provider point of view it is proven to be viable, profitable and generating a high and positive net present value (**Table 2a-b-c**).
- The viability of 2WTs based technologies can be enhanced when service provider purchases 2WT and implements as a combined package for multi-purpose use.
- Agricultural production surplus, effective demand and functional distribution and aftersales are keys to the scaling-up of mechanization.
- Mechanization is a ffordable to the poorest smallholder farmers (via Service Providers, SP).

Table 2 a-b-c: Cost-benefit analysis of 2WT based technology (single and combined operations) from service providers' point of view for **2a-**Mechekel, **2b-**Adwa and **2c-** Gudeya Billa Woredas

2b										
Indicators	Seeder, thresher, trailer, & water pump (case 1)	Thresher, trailer, and water pump (case 2)	Thresher and trailer (case 3)	Trailer (case 4)	Seeder, trailer, and water pump (case 5)	Seeder, thresher and trailer (case 6)	Seeder and trailer (case 7)	Seeder and water pump (case 8)	Seeder (case 9)	water pump (case 10)
NPV (\$)	24,976	20,362	19,318	14,725	20,384	23,932	19,340	2,404	1,360	-2,211
IRR (%)	62%	58%	59%	64%	67%	63%	70%	30%	26%	-10%
B/c ratio	1.66	1.66	1.69	1.72	1.69	1.69	1.73	1.25	1.22	0.66
Increase in c	ost (10%)									
NPV (\$)	21,195	16,886	16,168	12,398	17,425	20,476	16,707	1,447	728	-2,862
IRR (%)	52%	48%	49%	54%	57%	53%	59%	24%	21%	-17%

Table 1 a-b-c: Yields, production costs and gross margins analysis with and without mechanization for **1a-**Mechekel, **1b**-Adwa and **1c**- Gudeya Billa Woredas

| Vicino | V

Create access to affordable ransportation option for rural households

-Create employment opportunity for operator and other stakeholders along the value chain.

-Improve quality of grain or yield

-Compare to conventional, mechanized threshing reduce cost threshing by 54%.

-Reduce also labor drudgery

-Significantly reduce time spent on

crop harvesting from an average of 16 days for one farmer to 3.5 hours. -Reduce cost of crop harvesting by 53% -Reduce loose

produce more than one time in a year and increase production and income of farmers.

Provide access to irrigation, help farmers to

-Reduce cost of crop establishment/planting by 65% compare to conventional system
 -Reduce labor drudgery significantly -from 15-20 days using

conventional to 7-8 hours with this technology.

-By directly planting reduce soil erosion and improve soil fertility
-Improve yield on average by 30%

-Provide alternative and affordable ploughing option to small scale farmers. -cost effective in area where there is shortage of animal feed.

Can surve in area where even there is no

road access.

Figure 1: Validated technologies for scaling and promotion

