

Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH

International Center for Tropical Agriculture Since 1967 Science to cultivate change

Impact of Forage Management on Yield and Nutritional Quality of Cultivated Forages in North-Eastern Cambodia

Anna Seidel^{1*}, Adrian Bolliger², Uta Dickhöfer¹

Background

Challenge: Low productivity of cattle¹ and changes in agricultural land tenure and land use in Ratanakiri Province, Cambodia²

Potential solution: Cultivate productive and nutritious forages³

To compare the the **above-ground biomass** and the **nutrient concentration** of non-managed and managed (manured and weeded) farm-grown forages

Objective

Research Design

Fig. 1. Map of Northeast Cambodia with the target sites Au Toteng, Pruok, Chey Odom and Dei Lou. Study site: Northeast Cambodia, Lumphat district in Ratanakiri Province

Field study period: June to September (rainy season) 2015

Study size: Each smallholding (n = 20) managed 0.01 ha (manured with on average 0.24 t N/ha/month and weeded monthly) and non-managed 0.01 ha forages, and was surveyed

Cattle husbandry: 5 – 30 cattle/smallholding; June to November no supplementary feeding, remaining months mainly rice straw

Forage species: Stylosanthes guianensis, Panicum maximum, Brachiaria ruziziensis, B. ruziziensis × B. decumbens × B. brizantha (B. hybrid), and Paspalum atratum

Proximate forage analyses: Crude protein and fibre concentrations (n = 41)

Fig. 2. Managed forages.

Fig. 3. Non-managed forages.

Results

Forage growth was mainly influenced by water shortages during the dry season and water logging during the rainy season

Weeding and manuring of forages affected their yields more

High amount of labour involved in managing and using the forages

 Table 1. Above-ground biomass (t dry matter (DM)/ha/month) and chemical composition (g/kg DM) of forages.

		Treatment	
Forage species	Parameter	Non-managed	Managed
Paspalum atratum	Biomass	$\textbf{3.4} \pm \textbf{1.7}$	$\textbf{3.6} \pm \textbf{1.5}$
(n = 11)	Crude protein	63 ± 5	65 ± 8
Ϋ́Υ	Neutral detergent fibre	661 ± 63	620 ± 42
	Acid detergent fibre	398 ± 39	400 ± 55
Brachiaria ruziziensis	Biomass	1.0 ± 0.8	$\textbf{1.1}\pm\textbf{0.6}$
(n = 5)	Crude protein	68 ± 15	75 ± 26
	Neutral detergent fibre	677 ± 19	668 ± 16
	Acid detergent fibre	350 ± 36	357 ± 29
Stylosanthes	Biomass	$\textbf{1.4} \pm \textbf{1.1}$	$\textbf{1.4} \pm \textbf{1.0}$
guianensis	Crude protein	117 ± 14	128 ± 8
(n = 11)	Neutral detergent fibre	656 ± 38	625 ± 53
	Acid detergent fibre	417 ± 21	424 ± 69
Panicum maximum	Biomass	2.8 ± 1.6	$\textbf{3.6} \pm \textbf{1.5}$
(n = 7)	Crude protein	81 ± 34	86 ± 25
	Neutral detergent fibre	656 ± 63	646 ± 53
	Acid detergent fibre	384 ± 34	388 ± 67
B. ruziziensis x	Biomass	$\textbf{1.9} \pm \textbf{0.4}$	2.7 ± 1.3
B. decumbens x	Crude protein	87 ± 17	98 ± 12
B. brizantha	Neutral detergent fibre	627 ± 68	621 ± 43
(n = 7)	Acid detergent fibre	338 ± 67	356 ± 73

than their nutritional quality

Fig. 4. Managing forages.

Fig. 5. Determining biomass.

Conclusions

S. guianensis and B. hybrid provided high-quality feed

Weeding and manuring of forages did not increase their **nutrient content** sufficiently; smallholders rarely considered planted forages as worth their benefit

Outlook and Recommendations

Within a row, arithmetic means \pm standard deviations in bold are significantly different (mixed linear model, n = 41, Kenward-Roger's adjusted F-tests, P < 0.05).

Selecting adapted forage species to improve livestock productivity

Improving water-stress **tolerance** and water-use **efficiency** in forages, leguminous shrubs and trees in order to provide better productivity during often fluctuating water regimes

Reinforcing privately or communally owned fenced **pastures** or agricultural **cooperatives** to reduce workload

References

Devendra, C., Sevilla, C., 2002. Availability and use of feed resources in crop–animal systems in Asia. AGR SYST 71 (1-2), 59–73.
 Fox, J., Vogler, J.B., 2005. Land-use and land-cover change in montane mainland Southeast Asia. ENVIRON MANAGE 36 (3), 394–403.
 Duncan, A., Truong, T.K., Stür, W.W., 2013. Transformation of smallholder beef cattle production in Vietnam. INT J AGRIC SUSTAIN 11 (4), 363–381.