

On behalf o Federal Ministry for Economic Cooperation and Development

UNIVERSITY OF HOHENHEIM

Institute of Agricultural Sciences in the Tropics (Hans-Ruthenberg-Institute) Agronomy in the Tropics and Subtropics

Impact of Deficit Irrigation on Biomass and Nitrogen Accumulation in Mungbean (Vigna radiata L.)

Lisa Pataczek^a, Mikenna Smith^a, Thomas Hilger^a, Zahir Ahmad Zahir^b, Roland Schafleitner^c, Georg Cadisch^a

^aUniversity of Hohenheim, Institute of Agricultural Sciences in the Tropics, Germany; ^bUniversity of Agriculture, Faisalabad, Institute of Soil & Environmental Sciences, Pakistan; ^cWorld Vegetable Center, Headquarters, Taiwan

Background

- Mungbean (Vigna radiata) produces high-protein food and nitrogen-rich residues through biological N fixation
- Dryland cultivation in South and Central Asia is constrained i.a. by shortage of water and poor soil fertility

Objectives

To estimate N input of mungbean into a cropping system by:

Testing four varieties

1. NM 2011 (control) 2. AVMU 1604 (bruchid resistant) 3. KPS2 VC21184 (heat/salt tolerant) 4. AVMU 1635 (mildew resistant)

Assessing their biomass distribution and N accumulation under water stress

		Variety	Control	Moderate deficit	Severe deficit
			(%)	irrigation (%)	irrigation (%
	Pods	1	100 (±0.09)	156 (±0.13)	181 (±0.22)
		2	75 (±0.05)	(144 (±0.03)	75 (±0.07)
		3	125 (±0.09)	138 (±0.05)	125 (±0.02)
		4	144 (±0.09)	106 (±0.13)	125 (±0.06)
	Leaves &	1	100 (±0.56)	100 (±0.22)	95 (±0.12)
	stems	2	79 (±0.06)	89 (±0.03)	66 (±0.05)
Biomass		3	73 (±0.06)	89 (±0.11)	98 (± 0.26)
distribution across		4	84 (±0.09)	75 (±0.14)	59 (±0.05)
varieties (results	Roots	1	100 (±0.05)	156 (±0.15)	113 (±0.06)
are not significant,		2	75 (±0.01)	100 (±0.04)	100 (±0.06)
SD in brackets)		3	119 (±0.08)	100 (±0.07)	(181 (±0.12)
		4	119 (±0.04)	69 (±0.03)	100 (±0.07)

Results

Methods

- Three irrigation treatments: control, moderate deficit, severe deficit
- Harvest at maturity
- Assessment of dry matter
- Stable isotope (¹³C/¹⁵N) composition of above- and belowground plant parts

Conclusion

Drought stress visible in stable isotope composition of the seeds (¹³C)

- Variety specific N and biomass accumulation
- Indirect effect of stress treatments on $\delta^{15}N/^{14}N$ %
- No advantages of new accessions under water stress

-21 -0.5 -22 -23

0.5

-24 -25 -26 -27 -28 -29 $\delta^{13}C/^{12}C\%$ \Box Variety 1 \diamond Variety 2 \triangle Variety 3 \bigcirc Variety 4 Control / moderate / severe deficit irrigation

www.uni-hohenheim.de

Corresponding author: Lisa Pataczek; lisa.pataczek@uni-hohenheim.de