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Abstract Effects of stress on Plants

Increasing contamination and higher enrichment ratio of non-essential heavy metals induce various toxic responses in plants when
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essential toxic heavy metal, interferes with the plant growth and development. It reaches the leave through xylem and may become part of L SAhE s el aerass Nl
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the food chain, thus causing a detrimental effect to human health. Therefore, there is an urgent need to develop strategies for engineering and photoinhibition that leads |~
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plants for Cd?* tolerance and less accumulation. Plant species generate a range of defense mechanisms to resist Cd%* induced toxicity and to ET, NO, | A

recover the subsequent damages eliciting their genotype based biochemical responses. To counter damages plants have an efficient system |
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antioxidant system, transport metal ions including Cd?*, and thus play important role an ion homeostasis. The present study elucidates the D Eiﬁ",};ﬁ:,;n":nlffu'nl

role of a Pennisetum glutathione peroxidase (PgGPx) in Cd?* stress tolerance. Transgenic rice expressing Pg6Px showed tolerance towards 3;;‘3:“:*:3::“5“;? I8 |
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peroxide content. Roots of the transgenic lines accumulated more Cd** as compared to shoot. Pg6Px expression in rice also protected the i i s ,m., JH o ' 1:,’,»:.{:?;:”’::.
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Sfurther stressing the plant,

overexpression of PgGPx confers Cd?* stress tolerance in transgenic lines by maintaining cellular ion homeostasis and modulating reactive

oxygen species (ROS)-scavenging pathway. Thus, the present study will help to develop strategies for engineering Cd%*stress tolerance in

economically important crop plants.
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5. Plasmid protection against oxidative damage\ 6. Analysis of transgenic lines under heavy metal \ ﬁ . Measurement of ROS and antioxidant enzymes acﬁvity\
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Conclusions

\\ 1. PgGPx is a functional 2-cys thioredoxin dependent peroxidase.
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