

Contact information: hannes.karwat@posteo.de

δ¹⁵N leaf signature in *Brachiaria humidicola* reflects the potential Biological Nitrification Inhibition (BNI)

Hannes Karwat¹, Konrad Egenolf¹, Jacobo Arango², Jonathan Núñez², Danilo Moreta², Idupulapati Rao^{2,3}, Frank Rasche¹, Georg Cadisch¹

¹ Institute of Agricultural Sciences in the Tropics (Hans-Ruthenberg-Institute) (490), Agronomy in the Tropics and Subtropics (490e), University of

Hohenheim, 70599 Stuttgart, Germany. ² International Center for Tropical Agriculture (CIAT), A.A. 6713, Cali, Colombia. ³ Present address: Plant Polymer Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, 1815 North University Street, Peoria, IL 61604, USA.

Objectives and Hypothesis

Background

Investigate if high and low BNI Brachiaria humidicola (Bh) CIAT accessions show contrasting $\delta^{15}N$ signatures in leaves and link this to nitrification inhibition indicators

- ✓ High BNI *Bh* genotypes (CIAT 16888 & CIAT 679) feed on NH_4^+ with a lower δ¹⁵N signature due to nitrification inhibition, whereas low BNI CIAT 26146 (high nitrification) should feed on a respective $\delta^{15}N$ enriched NH₄+ pool. This should be reflected in the $\delta^{15}N$ signature of leaves
- Long-term cultivation of Bhs with high BNI potential should results in less leaching losses of ¹⁵N depleted NO₃⁻ and therefore in relative lower $\delta^{15}N$ leaf signatures compared to low BNI Bh genotypes, where higher δ^{15} N leaf signature are expected
- ✓ The tropical forage grass *Brachiaria humidicola* (*Bh*) reduces soil microbial nitrification through release of nitrification inhibitors (NIs) and consequently reduces formation of nitrate (NO_3) in soils
- \checkmark NO₃⁻ leaching and nitrous oxide (N₂O) emission might therefore be reduced by biological nitrification inhibition (BNI)
- \checkmark Intraspecific contrasting BNI potentials in *Bh* have been observed but screening methods for field plot application need to be further developed to identify promising Bh candidates with high BNI potential
- \checkmark Nitrification discriminates strongly against the stable isotope ¹⁵N and consequently leads to a ¹⁵N enriched ammonium (NH₄⁺) and a ¹⁵N depleted NO₃⁻pool
- \checkmark Long-term losses of ¹⁵N depleted NO₃⁻ via leaching enrich the remaining soil N relatively with ¹⁵N

Results

 \checkmark Sig. correlation among NO₃⁻ in soil and $\delta^{15}N$ in leaves at 8 days after N fertilization

✓ High BNI *Bh*s showed respective lower δ^{15} N signatures and less NO₃ in topsoil compared to *Bh* with low BNI potential

✓ Soil incubation indicated lower nitrification for high BNI genotypes compared to low BNI genotype

✓ Equal δ^{15} N signatures in Oct 2013 for the 3 genotypes. Two years later high BNI accessions had sig. lower $\delta^{15}N$ values in leaves compared to low BNI Bh

Material & Methods

✓ Study site: CORPOICA La Libertad Research station, Llanos of Colombia

✓ Contrasting BNI *Bh* genotypes were grown since 2012 in a fully randomized block design. In October 2015 plots were split and either fertilized (+N) or not (-N) with 70 kg N ha⁻¹. Soil was collected from -N plots and incubated for potential nitrification determination. Leaves were collected from both split plots of two high BNI (CIAT 679 and CIAT 16888) and one low BNI (CIAT 26146) Bh hybrids at 0, 3, 8 and 11 days after fertilization (DAF) and ¹⁵N was measured with an IRMS

Conclusions

✓ Expected high BNI potential of CIAT 16888 & CIAT 679 was confirmed by lower soil nitrification

 $\checkmark \delta^{15}$ N leaf signature was linked to soil nitrification

- \checkmark Decreasing $\delta^{15}N$ values in leaves over time indicated reduced losses of (¹⁵N depleted) NO₃⁻ due to expected reduction of soil nitrification
- \checkmark The δ^{15} N method has the potential to detect:
- \checkmark differences of contrasting *Bh* accessions in terms of BNI (preferentially low/no uptake of ^{15}N depleted NO_3^{-})
- ✓ differences of long-term N losses in the field
- \checkmark ¹⁵N natural abundance of the sample relative to the standard (atmospheric N) was expressed as: $\delta^{15}N\% = [(R_{sample} / R_{standard}) - 1 \times 1000 (\%)]$ where R represents the isotope ratio ($^{15}N/^{14}N$) and $R_{standard}$ is $^{15}N/^{14}N$ of atmospheric N₂ i.e. 0.3663 ± 0.0004 atom ¹⁵N‰

Further work of the authors:

- Karwat H, Moreta D, Arango J, Núñez J, Rao I, Rincón A, Rasche F, Cadisch G (2017) Residual effect of BNI by *Brachiaria humidicola* pasture on nitrogen recovery and grain yield of subsequent maize. Plant and Soil. Article in press. DOI: 10.1007/s11104-017-3381-z
- Karwat H, Sparke MA, Arango J, Núñez J, Moreta D, Rao I, Rasche F, Cadisch G (201X) Nitrate reductase activity in leaves as an indicator of biological nitrification inhibition ability of Brachiaria humidicola. Submitted to Plant and Soil, Article under review
- Núñez J, Arevalo A, Karwat H, Egenolf K, Rao I, Cadisch G, Rasche F, Subbarao G, Miles J, Arango J (201X) Biological nitrification inhibition activity in a soil-grown biparental population of the forage grass Brachiaria humidicola. Submitted to Plant and Soil, Article under review

We would like to thank for financial support of our research:

Federal Ministry for Economic Cooperation and Development

