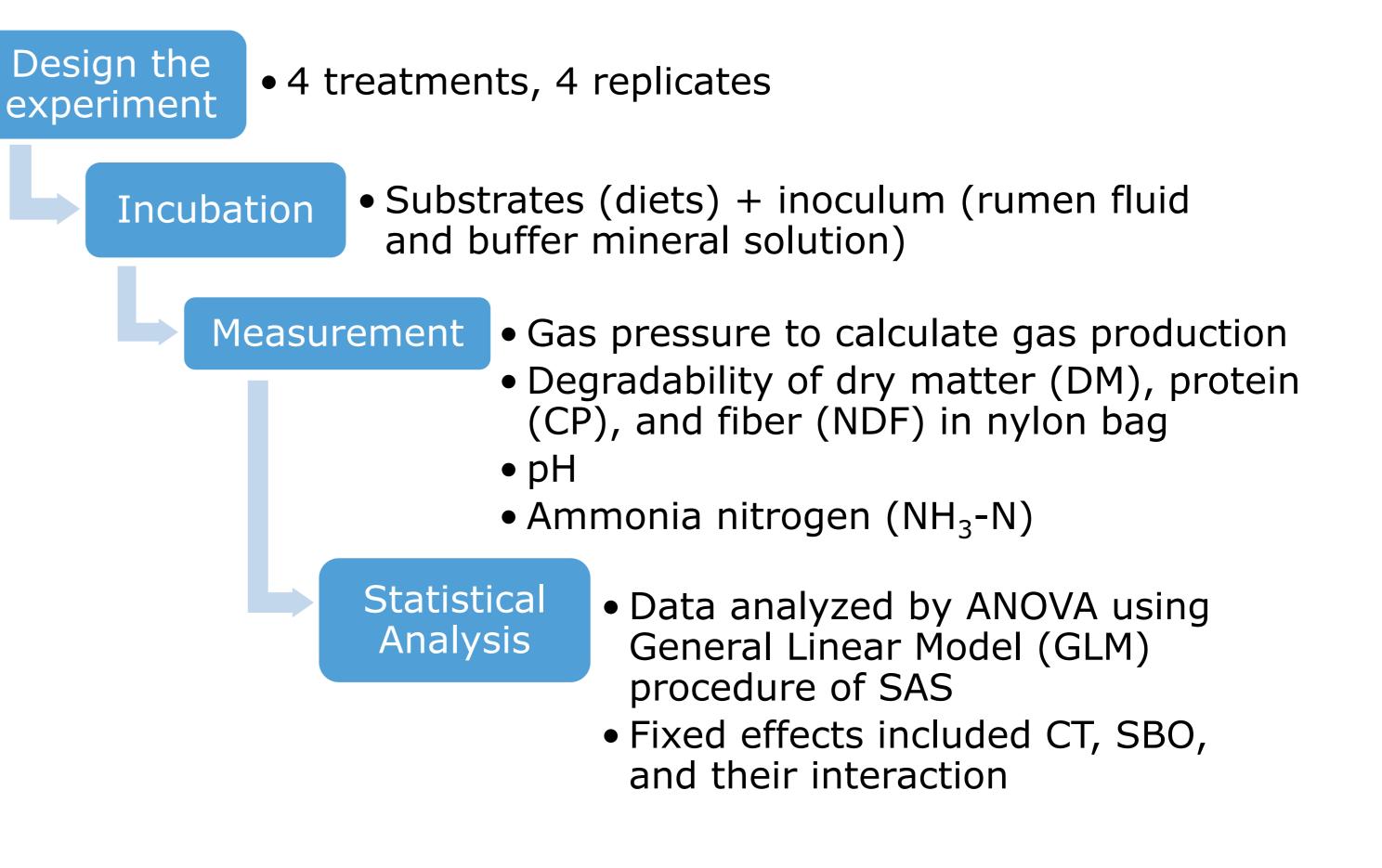
Effect of Tannin and Soybean Oil Supplementation on Gas Production, Degradability, and Ruminal Fermentation

Titis Apdini¹, Jan Dijkstra¹, Daniel Ribeiro Menezes², Aline da Silva Santana², Patrícia Rodriges de Lima², Améríco Fróes Garcez Neto³ ¹Wageningen University, Animal Nutrition Group, The Netherlands ²Federal University of São Francisco Valley, Graduate Program of Veterinary Sciences, Brazil ³Federal University of Parana, Department of Animal Science, Brazil

Presented for: TROPENTAG 2017


Background

Tannins and soybean oil are available as feed supplement to ruminants in the semi-arid region of Brazil and potentially change the degradability of nutrients and gas production. However, the effect of combination of both supplements in animal diets is still lacking.

Objective

To evaluate the influence of diets with condensed tannin (CT) and soybean oil (SBO) supplementation on in vitro gas production, degradability and ruminal fermentation characteristics.

Methodology

Results

Table 1. In vitro gas production, potential degradability of DM, CP, and NDF, pH, and NH₃-N concentration upon supplementation of CT and

Parameters	Treatments ¹⁾					P-value		
	Τ1	T2	Т3	T4	SEM	CT	SBO	CT-SBO
Gas production (ml g ⁻¹ of DM)	128	104	111	99	2.3	<0.001	<0.001	<0.001
DM potential degradability (%) ²⁾	78.5	86.4	77.7	80.5	0.93	0.006	0.067	0.140
CP potential degradability (%)	84.9	78.0	73.5	80.3	0.83	0.961	0.009	<0.001
NDF potential degradability (%)	63.8	57.3	56.3	71.4	1.93	0.330	0.425	0.025
рН	6.5	6.6	6.6	6.7	0.02	<0.001	0.014	0.574
NH_3 -N (mg l ⁻¹ of rumen liquid)	13.9	16.9	19.5	19.1	0.08	0.302	0.007	0.177

¹⁾T1 = 60% elephant grass + 40% concentrate (control); T2 = 60% elephant grass + 37% concentrate + 3% CT (Weibull®); T3 = 60% elephant grass + 35% concentrate + 5% SBO; T4 = 60% elephant grass + 32% concentrate + 3% CT (Weibull®) + 5% SBO ²⁾The parameters of potential degradability were estimated by model of Ørskov and McDonald (1979), using non-linear regression procedures (NLIN).

Conclusions

Acknowledgements

- CT and SBO decreased gas production and potential degradability of CP and NDF, but a significant interaction between CT and SBO occured.
- Both CT and SBO increased the pH of rumen liquid.
- Only SBO increased NH_3 -N content.
- Both CT and SBO are effective to control nutrient degradability.

Laboratory of Animal Nutrition of EMBRAPA Semi-Arid, Petrolina, Brazil for the assistance during the analysis of diet composition and ruminal fermentation.

Wageningen University & Research
P.O. Box 123, 6700 AB Wageningen

Contact of author: Titis Apdini

E-mail: titisapdini@hotmail.com or titis.apdini@wur.nl

