

The effect of *Pseudomonas* sp. RU47 and phosphorus fertilization on gene abundances and activities of phosphomonoesterase in the rhizosphere of tomato

Yulduzkhon Abdullaeva¹, Dinah Nassal¹, Marie Uksa¹, Fabian Bergkemper², Stefanie Schulz², Michael Schloter ²& Ellen Kandeler¹

¹Institute of Soil Science and Land Evaluation, Soil Biology, University of Hohenheim, Stuttgart ²Research Unit for Comparative Microbiome Analyses, Helmholtz Zentrum München, Neuherberg

yuabdullayeva@gmail.com

INTRODUCTION

Low availability of phosphorus (P) in soils might be compensated by inoculation with PGPB that produce extracellular enzymes, such as acid and alkaline phosphomonoesterases.

RESULTS

180

ACID PHOSPHATASE ACTIVITY Rhizosphere Bulk

Higher abundance of RU47 was detected in P+ than in

Hypotheses

- Acid and alkaline phosphomonoesterase activities and phosphatase-encoding gene abundances are expected to be higher in rhizosphere than in bulk soil.
- Microbial inoculation with *Pseudomonas* sp. RU47 and P fertilization positively affects acid and alkaline phosphomonoesterase activities and gene abundances.

MATERIALS AND METHODS

Experimental Design

Plant Tomato (*Solanum lycopersicum* L. var. Mobil) **Duration** 50 days

Conditions

> rhizoboxes (2.08 L) Luvisol (1) : sand (1)

the **P-** treatment 50 DAS (data not shown).

- Acid and alkaline
 phosphomonoesterases
 showed higher activities in
 the rhizosphere than in the
 bulk soil (p < 0.05) in all
 treatments.
- Dead RU47 increases significantly (p<0.5) alkaline phosphomonoesterase activity only in the rhizosphere probably due to nutrient addition from dead cells which stimulated enzyme production by endogenous microorganisms.

N-, K-, Mg- and Ca- fertilization
 greenhouse (ø 20.1 °C, ø 52.9 % humidity)
 Replicates 5 (Σ 40 rhizoboxes)

Treatments

- > P fertilization
- PGPB inoculation

Bacterial mix unselectively cultivated
microorganisms from soil
Dead RU47 heat killed *Pseudomonas* sp. RU47 cells
Viable RU47 living *Pseudomonas* sp. RU47 cells

- > In general, quantity of *phoD* was higher in rhizosphere than in bulk soil (p < 0.05).
- P fertilization together with RU 47 inoculation reduced the abundance of bacteria carrying the *phoD* gene in the rhizosphere and bulk soil.
- Relative abundance of *phoD* gene to bacterial 16S rRNA was significantly decreased in bulk soil of RU47 inoculated rhizoboxes under P fertilized rhizoboxes (*p* < 0.05).</p>

CONCLUSION and **OUTLOOK**

P availability in soil might influence RU47's efficiency in P mineralization. The addition of dead or viable RU47 cells increased phosphatase activity in the rhizosphere. While the addition of dead RU47 cells might stimulate indigenous microbial activity (priming effect), increased PA by the addition of viable RU47 cells might cause by RU47 or interacting indigenous soil microbes. Since RU47 is mainly producing acid phosphatases in pure culture, we will extend our functional gene analyses to *phoN* and *appA* (acid phosphatases).

References: Bergkemper, F., Kublik, S., Lang, F., Krüger, J., Vestergaard, G., Schloter, M., & Schulz, S. 2016. Novel oligonucleotide primers reveal a high diversity of microbes which drive phosphorous turnover in soil. *Journal of Microbiological Methods*, 125, 91–97. Marx, M.C., Wood, M., Jarvis, S.C. 2001. A microplate fluorimetric assay for the study of enzyme diversity in soils. *Soil Biol Biochem*, 33, 1633–40. **Aknowledgment:** This project is funded by the European Commission within the 7th Framework Programme | Grant No. 312117. Contribution of this poster is supported by AGRINATURA

