

Soil fertility variability as influenced by resource endowment and farmer knowledge in smallholder farming systems of DR Congo

ISAAC BALUME¹, GENEROSE NZIGUHEBA², BERNARD VANLAUWE², GEORG CADISCH¹ CARSTEN MAROHN¹, FRANK RASCHE¹

¹University of Hohenheim, Inst. of Agricultural Sciences in the Tropics, Germany ²International Institute of Tropical Agriculture Nairobi, Kenya

www.foodsecurity.de RESULTS AND DISCUSSION

- Smallholder farms in South-Kivu, Eastern DR Congo, exhibit a high degree of soil fertility variability as driven by socioeconomic and biophysical factors.
- Soil variability often translates into differences of resource endownments for individual households.
- The objective of this study was thus to study the extent of soil fertility variability in selected sites of South Kivu to design best-fit technologies for soil fertility imrovement.

MATERIALS AND METHODS

Fig 1. Study area and sampling sites in South-Kivu, CR Congo.
 ➢ Study sites: Bushumba Centre, Mulengeza in Kabare North district and Madaka and Luduha in SW of Bukavu.

Fig 2. Soil fertility properties controlled by typology and soil fertility perception.

- ANOVA of soil fertility indicators resulted in significant differences between sites (*p*<0.001), but not between resources endowment.
- Madaka has shown to have good nutrient status except limitation for available P (*p*=0.05).
 Farmers' perception on soil fertility was proven for most of the soil properties assessed (*p*<0.001).
- Typology based on land ownership: wealthy (>2 ha), intermediate (1-2 ha), poor (<2 ha).</p>
- Soil Fertility classes: Good and degraded soils.
- \succ Soil depth: top soil (0-20 cm) and subsoil (20-50 cm).
- > Total households investigated: 96.
- Soil properties investigated: total soil N (N_t), soil organic C (C_{org}), plant available P (P_{av}), soil pH.

ACKNOWLDGEMENTS

BMZ through the "LegumeCHOICE" project, Food Security Center (FSC) and IITA CORAFWECARD for financial support.

CONCLUSION AND OUTLOOK

Soil fertility was highly variable between implementation sites, fertility classes and soil depth, while it was not linked to wealth status of the household. Hence, designing best-fit technologies for soil fertility improvement should recognize the wide variability in soil fertility occurring even within farms.

Contact: Isaac.balume@uni-hohenheim.de

With financial support from the

Federal Ministry for Economic Cooperation and Development

