Increasing Crop Productivity in Rainfed Rice Systems of Central Uganda S. Ziegler, D. Neuhoff, K. Senthilkumar, M. Namugalu, K. Grotelüschen, B. Glasner, M. Becker, U. Köpke

Introduction

East African wetlands have high potential for agricultural production but they are widely unused. We investigated agronomic options for rice production at different positions of a valley bottom swamp in Uganda aiming to:

Assess key yield-limiting factors in rice \bullet (bunds (water), weeds, nitrogen)

Site

- Uganda, Namulonge inland valley swamp
- Tropical climate with two rainy seasons
- Seasonally flooded gley soils
- Diverse land use (horticulture, cereals, forest)

- Investigate effects of mineral and organic ulletfertilizers on productivity and N efficiency
- Compare hydrological zones and their influence on rice productivity for different management options

- Transplanted rice (cv NERICA-4)
- Three valley positions (fringe, middle, center)
- Six treatments in four reps as randomized complete block design
- Three consecutive years (2014, 2015, 2016)

Торіс	Treatment	Agronomic details	Abbrev.
	farmers' practice	no bunding, 1 time weeding, 0 N	FP
yield gaps (YG)	bunding, weeding	0 N	ON
	mineral nitrogen	60 kg N ha ⁻¹	60N-Urea
	max. attainable yield	120 kg N ha ⁻¹ , 60 kg P ha ⁻¹ , 60 kg K ha ⁻¹ , irrigated	120N-Urea PK
alternative options	green manure	2 month pre-cropped <i>L. purpureus</i> (60 N)	60N-GM
	organic manure	pre-cropped <i>L. purpureus</i> + chicken manure (120 N)	120N-OM

Findings

- Farmers' yields : 2.1 Mg ha⁻¹
- Attainable yields: 6.0 Mg ha⁻¹
- Applying 60 kg N ha⁻¹ (mineral or organic), additional weeding and building of field bunds double current farmers' yields

Uganda, valley positions and wetland type

Soil properties 2014	рН 1: 2.5 Н2О	Total N g kg-1	Total C g kg-1	EC μS/cm
Center	5.0	2.0	24.4	127.1
Middle	5.4	1.1	15.0	76.6
Fringe	5.0	1.4	21.7	64.4

Soil properties at planting in 2014 after green fallow

			Results – Rice
Total dry matter (Mg ha ⁻¹) 25			Total dry matter in 2014
20 -	Harvest	sign.	- 10 1

Overview of six treatments

 Repeated application of organic manure (120 kg N ha⁻¹) provokes cumulative effects increasing yields

Development of total plant dry matter for six treatments and three sites at four sampling stages in 2014. Maximal dry matter accumulation of **19.1 Mg ha⁻¹ (120N-Urea PK) compared to farmers'** practice with only 8.2 Mg ha⁻¹.

Agronomic Efficiency 2014	Center kg grain kg ⁻¹ N applied		Middle kg grain kg ⁻¹ N applied		Fringe kg grain kg ⁻¹ N applied	
60N-Urea	2.5	b	13.4	а	7.9	ak
120N-Urea PK	23.3	а	25.6	а	22.7	а
60N-GM	12.8	ab	25.8	а	0.0	b

Yield across six treatments, three sites and three years:

Farmers' practice show a considerable yield gap

120N-OM	17.4	ab	12.7	а	0.5	ab
---------	------	----	------	---	-----	----

Agronomic efficiency (AE) of six treatments at three sites in 2014. Highest AE is reached by 120N-Urea PK ranging from 23-26 kg grain harvested per each kg N applied. High variability of AE for organic fertilizers at the different valley positions ranging from 0–26kg grain per kg N applied.

- Higher management intensities increase yields significantly (field bunds, weeding and fertilizers)
- 60N-Urea and 60N-GM reach same yield levels
- A significant higher yield in the first year was caused by mineralization effects after green fallow
- Rice productivity was not effected by valley position

Nitrogen uptake of six treatments and three sites at four sampling stages in 2014. Maximum N uptake of 200 kg ha⁻¹. The high uptake is a result of nitrogen mineralization from green fallow residue.

Susanne Ziegler University of Bonn, Germany Institute of Organic Agriculture sziegler@uni-bonn.de

universität**bonn**

nstitut für