

Effects of biochar on gaseous carbon and nitrogen losses during composting of farm residues in northern Ghana

Delphine Manka'abusi¹, Christoph Steiner¹, Volker Haering², Abdul-Halim Abubakari³, Bernd Marschner² and Andreas Buerkert¹

¹Universität Kassel, Organic Plant Production and Agroecosystems Research in the Tropics and Subtropics (OPATS), Steinstrasse 19, D-37213 Witzenhausen, Germany

²Ruhr Universität Bochum, Soil Science and Soil Ecology, Germany; ³University for Development Studies, Tamale, Ghana

Introduction

Adding biochar to nutrient rich organic during composting reportedly matter reduces nitrogen (N) volatilization and carbonization of feedstock stabilizes

Highlights

 Compost mixtures containing biochar showed lower decomposition rates

Methods

• Three biochar types (corn cobs, cCC; rice husks, cRH; and wood cWO) or their uncharred feedstocks (CC, RH and WO), were co-composted at 25 vol.% addition

organic carbon (C). A biochar-compost may foster long-lasting soil organic matter buildup while providing nutrients to crops. We studied the effects of biochar, produced from agricultural residues as compost additives on gaseous C and N fluxes in northern Ghana.

- Rice husks biochar most strongly reduced CO₂-C and N₂O-N emissions
- Carbonization of feedstock is an option to reduce C and N losses
- with poultry manure (15 vol.%) and rice straw (60 vol.%) at 3 replicates.
- During the 34-day experiment, compost lacksquarewas regularly mixed and water content adjusted.
- During composting, losses of CO₂-C, N₂OulletN and NH₃-N were measured using a closed chamber system (INNOVA 1312-5).

Results

CO₂ emission rates

- CO₂ emission rates were higher during initial composting phase in biochar amended composts, then dropped below the feedstock composts (Fig. 4)
- Thermophilic phase lasted longer in composts without biochar (Fig. 6)
- Emission rates and temperature were ulletpositively correlated (r = 0.519, p <0.001).
 - ---Corn cob biochar ----Rice husks
 - ---Corn cobs

UNIKASSEL

VERSITÄT

1312-5) (a) σ 34 (kg m⁻²; 12

CO₂ -C emissions 9 ω (b) 4 O-N emissions (g m⁻² 9 σ ω Ž \sim (C)

 $34 \, d^{-1}$)

Cumulative C and N losses

- Total CO₂-C losses always lower in biochar composts than in the respective feedstock composts (Fig. 5a)
- Reduced turn-over, likely a consequence ulletof biochemical stability of biochar-C
- N₂O-N emissions also lower in cRH ullet(35%), cCC (9%), and cWO (16%) compared with the uncharred feedstock (Fig. 5b)
- No consistent effects of biochar on the ulletvolatilization of NH_3 -N (Fig. 5c)

Figure 4 Fluxes of CO₂-C for different feedstocks during composting. Data show mean (n=3) ± one standard error. Arrows indicate water input, * indicate a significance level of p < 0.05

RUHR-UNIVERSITÄT BOCHUM

RUB

Figure 5 Cumulative emissons of (a) CO_2 -C (b) N_2O-N and (c) NH_3-N after 34 days of composting different compost mixtures (n=3) * indicate a significance level of p < 0.05

www.urbanfoodplus.org

Figure 6 Temperature measured in composts at 0.10m depth during a composting period of 34 days for different compost mixtures. Data show mean (n = 3)

Acknowledgements This work was carried out within the UrbanFood^{Plus} Project, funded by the German Federal Ministry for Education and Research and the German Federal Ministry for Economic Cooperation and Development under the initiative GlobE – Research for the Global Food Supply, grant number 031A242-A,B. We also thank our African

partners.

Federal Ministry of Education

and Research

SPONSORED BY THE