at Tropentag 2017 in Bonr

Asep I.M. Ali¹, Shimels E. Wassie², Daniel Korir³, John Goopy³, Lutz Merbold³, Klaus Butterbach-Bahl³, Uta Dickhoefer², Eva Schlecht¹

Effect of sweet potato vine and urea molasses supplementation on feed

intake, diet digestibility and methane emissions of heifers on a poor

quality tropical diet

¹ Animal Husbandry in the Tropics and Subtropics, University of Kassel and Georg-August-Universität Göttingen, Germany ² Animal Nutrition and Rangeland Management in the Tropics and Subtropics, University of of Hohenheim, Germany ³ Livestock, System and Environment, International Livestock Research Institute (ILRI), Kenya

Introduction

Sweet potato vine silage (SPVS) and urea-molasses blocks (UMB) are recommended as alternative supplementation for ruminants in tropical regions:

RS

Ζ

CE7

- High nitrogen concentration
- Low costs under smallholder conditions
- → We evaluated effects of SPVS and UMB supplementation on intake, digestibility and methane emissions of Holstein Friesian x Boran heifers

Materials and Methods

- Trials conducted at ILRI, Nairobi, Kenya in 2015.
- Six Holstein Friesian x Boran heifers served as experimental animals (Fig. 1).
- Three diet treatments:
 - Basal diet (BD)
 - SPVS

• UMB

Fig. 1: Holstein Friesian x Boran heifers during adaptation period.

Results

Digestibility of DM (Tab. 1) was higher for diet SPVS $(p \le 0.05)$ than for BD but similar to UMB (p > 0.05).

Tab. 1: Intake and digestibility of diets BD, SPVS and UMB by Holstein

Friesian x Boran heifers and resulting methane emissions.

Variable	BD	SPVS	UMB	SEM
Intake (g kg ^{-0.75} LW)				
Drv matter	70.9	76.0	66.8	3.08

- Basal diet (BD) consisted of 61.4% wheat straw and 38.6% Rhodes grass hay (on dry matter –DM– basis).
- Diet SPVS contained 80% of BD plus 20% of SPVS (1.8% molasses, 67% vine, 31.2% root on DM basis).
- Diet UMB was BD + ad libitum UMB (35% molasses, 19% CaHPO₄, 10% urea 10%, 10% salt, 5% cotton seed meal).
- Quantitative and qualitative data on feed intake and faecal excretion was collected during two 7-day experimental periods.
- Enteric methane (CH_4) emissions were determined during 3 days of respiration chamber measurements.
- Both experimental periods were preceded by 21 days of adaptation to the diets.

Crude Protein	5.6	6.7	5.5	0.31	
Digestibility (g kg ⁻¹) Dry matter	474 ^a	510 ^b	480 ^{ab}	10.1	
CH ₄ emission (liters)					
per animal x day	177	176	162	5.6	
per kg DM Intake	58	54	58	1.5	
per kg DM digested	123 b	105 ^a	121 ^{ab}	4.1	

Means with different superscripts differ at $p \le 0.05$. DM Dry matter, SEM Standard Error of the Mean. For diet abbreviations see Materials and Methods.

- Daily CH₄ emissions per animal and per kilogram DM intake (Fig. 2) did not differ between diets (p>0.05).
- Per unit of digested DM (Fig. 2), CH_4 emissions were lower for SPVS than for BD ($p \le 0.05$).

Conclusion

Supplementation of the diet with about 20% SPVS has the potential to improve diet digestibility and decrease enteric methane emission in cattle fed with poor quality roughage.

Fig. 2: Relationship between daily dry matter (DM) intake and A) daily methane emission per animal; B) unit of digested dry matter.

Note the differently scaled Y-axes.

LIVESTOCK RESEARCH INSTITUTE

Federal Ministry for Economic Cooperation and Development

S

S

tropanimals@uni-kassel.de