Tropentag, September 20-22, 2017, Bonn

"Future Agriculture: Socio-ecological transitions and bio-cultural shifts"

Development of a Certification Program for Virus-Tested Plant Material in Colombia: A Collaborative Initiative

Joseph Cutler¹, Christian Lüchau¹, Juliane Langer¹, Susanne von Bargen¹, Orlando Losada Acosta², Fánor Casierra Posada³, Adriana Castañeda Cárdenas⁴, Mónica Betancourt Vaquez⁵, Wilmer Cuellar⁶, Eduardo Arvydas Stasiukynas⁷, Emilio Arevalo-Peñaranda⁸, Carmen Büttner¹

¹Humboldt-Universität zu Berlin, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences (ADTI), Germany

²National University of Colombia, Faculty of Medicine, Colombia

³Pedagogical and Technological University of Colombia, Fac. of Agricultural Sciences, Colombia

⁴Colombian Agricultural Institute (ICA), Technical Direction of Analysis and Agricultural Diagnostics, Colombia

⁵Corporación Colombiana de Investigación, Colombia

⁶International Center for Tropical Agriculture, Virology Laboratory, Colombia

⁷Hacienda Misiones, Mesitas del Colegio, Colombia

⁸Colombian Agricultural Institute (ICA), Direction of Epidemology and Phytosanitary Vigilance, Colombia

Abstract

Crops grown for export in the tropics supplement economies by providing rural income and means of employment, and in certain countries there is a lack of information and continuity to control pathogens. Plant viruses severely affect Colombian crops, and studies indicate that economic losses caused by phytosanitary problems could be avoided with a standard procedure for preventive management. German and Colombian universities, the Colombian Agricultural Institute (ICA), the Colombian Corporation of Agricultural Investigation (CORPOICA), and the International Center for Tropical Agriculture (CIAT) are working together on the initiation of a national agricultural certification program. Three important exports from Colombia have been chosen as model plants for experimentation: ornamental rose (Rosa sp.), cape gooseberry (Physalis peruviana L.), and purple passion fruit (*Passiflora edulis* Sims). Tests for routine detection of plant viruses affecting these cultivars are being developed based on an inventory of known and novel viruses detected in large and small representative farms in 2016–17. Distribution of known plant viruses affecting rose (PNRSV, TSV), cape gooseberry (PVY), and purple passion fruit (SMV, PFYMV) were investigated by serological (ELISA) and molecular (RT-PCR) techniques. Novel viruses will be identified by application of Next Generation Sequencing (NGS) to pooled samples of diseased crops. Small national producers and larger exporters of horticultural and agricultural products can benefit from tools for controlling viral pathogens. The competitiveness of Colombian agriculture in international markets depends on the use of healthy domestic plant material and therefore, virus-free certification can improve quantity and quality of yields and contribute to better trade policy decision-making. The goal

Contact Address: Joseph Cutler, Humboldt-Universität zu Berlin, Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences (ADTI), Lentzeallee 55/57, 14195 Berlin, Germany, e-mail: joseph.cutler@agrar.hu-berlin. de

of this research is to develop a pilot protocol for routine diagnosis that can be applied in a certification programme for virus-tested plant material for several Colombian horticultural products.

Keywords: Certification, Colombia, plant viruses, quality yields, rural livelihoods