

Ana Salvatierra-Rojas, Marcus Nagle and Joachim Müller University of Hohenheim, Agricultural Engineering, Tropics and Subtropics Group, Germany

Introduction

- An Inflatable Solar Dryer (ISD) has been developed based on the Hohenheim-type tunnel dryer (Fig. 1).
- The ISD does not require a solid structure as the ventilators inflate the dryer to form a tunnel, thus the system is collapsible and can easily be transported.

Results

- Energy consumption and air conditions inside the ISD with and without regulation are shown in Fig. 4.
- Ventilation was distinctly reduced, while temperature behavior was not considerably affected.
- This lead to substantial reduction in power demand until late afternoon, when consumption became similar.
- Overall, substantial energy savings were observed.

- However, forced ventilation is driven by PV-charged batteries which can quickly become depleted.
- Improvement of the operation is required to regulate energy consumption according to demands of the drying process to prolong the battery charge.

Material and Methods

Ambient

temperature

Controller

error

- An embedded 'smart' controller was designed using a PI unit and analog temperature sensor to regulate power supply to the ventilators (Fig 2).
- The control unit was tested measuring air conditions and power consumption in the ISD (Fig 3).

PWM

Fig. 3. Conducting power management experiments in the ISD

Fig. 4. Energy consumption of the ventilators as well as air velocity and temperature at the ISD outlet with and without 'smart' control.

Output regulated

Speed

Conclusions

Fig. 2. PI 'smart' controller with flow chart

- A PI controller was successfully integrated in the ISD system to reduce the energy consumption.
- Regulated ventilation was achieved over a range of temperatures without compromising drying conditions.
- A low-cost automated 'smart' control system for the ISD was successfully designed, implemented and tested.

