

Zentrum für Entwicklungsforschung Center for Development Research

Determinants of Household Drinking Water Quality in **Rural Ethiopia**

Muhammed Abdella Usman¹, Nicolas Gerber² and Evita H. Pangaribowo³

^{1,2} Center for Development Research, Walter-Flex Str. 3, 53113 Bonn, Germany ³ Dep. of Environmental Geography, Gadja Mada University

Background

- Lack of access to safe & adequate water supply, & the health risks associated with water- related diseases are major public health problems in many developing countries.
- In Ethiopia, only 49% rural households have access to 'improved' water sources (WHO/UNICEF 2015).
- This definition of access to 'improved' water source does not consider the quality of the water; consequently, it does reliably predict neither the microbiological nor the physiological quality of the water being consumed.

Study Objective

To investigate the key drivers of poor quality of stored household drinking water and community water sources in rural areas of Fogera and Mecha districts.

Study Areas

Figure 1: Map of the study areas

Data and Methods

- A stratified two-stage cluster sampling was used to selected 454 sample households (277 hh from Fogera & 177 hh from Mecha district).
- A household survey conducted between February and June 2014
- Water samples quality testing conducted for
 - 454 stored household drinking water, and
 - 61 community water sources for the presence of Escherichia coli (E.coli) bacteria (CFU/100ml water) using membrane filtration method.

Results and Discussion

- Based on the JMP definition, 50% of our sample households have access to improved drinking water sources.
- 58% of the water samples from household's drinking water storage is contaminated with E.coli (at least I E.coli CFU/100ml water).

Table I: Community water source sample test results

		Contaminated		
Source type	Ν	Column percentage	Row percentage	Mean E. <i>coli</i> per 100ml
Protected wells/spring	29	37.78	58.62	6.83
Unprotected wells/spring	26	48.89	84.62	34.46
Surface water sources	6	13.33	100	61.33

Source: Authors' computation using survey data.

Figure 2: Drinking water source types and stored drinking water contamination

|--|

VARIABLES	Odd ratio	SE	OLS	SE			
Primary water source (ref. protected well/spring)							
Unprotected well/spring	1.889**	0.532	0.315**	0.155			
Surface water	1.111	0.419	0.235	0.233			
Water collection time (I=30min/less)	0.372**	0.155	-0.911***	0.220			
Container (1=Jerry can)	3.570***	1.291	1.086***	0.186			
Highest education completed	0.899***	0.036	-0.051*	0.026			
Household size	0.878	0.085	-0.120**	0.056			
Household density	I.490***	0.175	0.351***	0.066			
Handwashing with soap	0.373***	0.112	-0.611***	0.162			
Livestock units	1.288***	0.096	0.166***	0.040			
Irrigation farming (1=yes)	1.507	0.407	0.439***	0.137			
Water user group (1=yes)	0.146***	0.051	-1.41 9 ***	0.177			
Pit latrine (1=yes)	0.847	0.234	-0.510**	0.243			
Water source location $(1 = on premises)$	0.607	0.244	-0.446**	0.037			
Pit latrine X water source location	1.418	0.768	0.567**	0.267			
Pseudo/R-squared	0.35		0.45				
Model Chi2/F-Test	185.81		68.18				
Model p-value	0.000		0.000				

Robust standard errors adjusted for clustering at the village level;

Significance level *** p<0.01, ** p<0.05, * p<0.1

The OLS model predicts the natural log of E.coli.

The models are also controlled for proportion of adult women & garbage disposal behaviors.

Conclussions and Policy Implication

The study suggests that there is a need to promote water safety along the POS to POU to advance the SDG6 of ensuring access to clean water for everyone.

- Water source points should be adequately protected & ad hoc water quality testing & quality control mechanisms need to be in place to ensure safety of rural water supply.
- Promoting household water treatment practices (only 8% of the surveyed households practice water treatment irregularly).
- Providing safer & convenient storage containers/promoting how to clean jerrycan properly would avoid substantial risk of water contamination.
- Building the capacity of WUA is critical in the provision of sustainable rural water supply.

Reference: WHO/UNICEF (2015): Progress on drinking Water and sanitation: 2014 update and MDG assessment. New York, NY, USA, United Nations Children's Fund; Geneva, Switzerland (UNICEF), World Health Organization (WHO).

Acknowledgment: Funding was provided by Bill & Melinda Gates Foundation and supported by a grant from the Dr. Hermann Eiselen Doctoral Programme of the Foundation of fiat panis.

¹Corresponding author: Email: mabdella@uni-bonn.de Presented at Tropentag 2016: September 18 - 21, BOKU Vienna, Austria