# **Digestibility and metabolizable energy of** selected tropical feedstuffs estimated by in vitro and prediction equations

## Alice A. Onyango<sup>a</sup>, Uta Dickhoefer<sup>\*a</sup>, Klaus Butterbach-Bahl<sup>b,c</sup>, John P. Goopy<sup>b</sup>

<sup>a</sup>University of Hohenheim, Institute of Agricultural Sciences in the Tropics, Stuttgart, Germany. <sup>b</sup>International Livestock Research Institute (ILRI), Nairobi, Kenya. <sup>c</sup>Karlsruhe Institute of Technology, IMK - IFU, Garmisch-Partenkirchen, Germany.

## Introduction

- Organic matter digestibility (dOM) and metabolizable energy (ME) content are decisive for the nutritional quality of feeds.
- In vivo determination of dOM and ME is best, but is laborious and expensive.

## **Objectives**

- 1. Determine nutritive quality of locally used tropical feedstuffs in Lower Nyando, Kenya.
- 2. Compare dOM and ME of such feedstuffs using *in vitro* gas

# Materials and methods

- 60 households in 20 villages in Lower Nyando (Feb'14 - May'15).
- 75 pasture herbage and 46 other feedstuffs samples
- Nutrient analysis and *in vitro* incubations.



September 2016

 Nutrient analysis is routine, fast , and cheap, but correlations with *in vivo* data are mixed.

production method and some published equations.

 Multiple comparison of dOM and ME values from different methods.

## Results

| Feedstuff                  | n  | DM           | CA           | NDF          | ADF          | СР           | EE            | dOM       | GE           | ME             |
|----------------------------|----|--------------|--------------|--------------|--------------|--------------|---------------|-----------|--------------|----------------|
|                            |    | g/100 g FM   | g/100 g DM   |              |              |              |               | g/100g OM | 1 MJ/kg DM   |                |
| Pasture herbage            | 44 | $33 \pm 2.6$ | $10 \pm 0.3$ | 63 ± 0.5     | 32 ± 0.5     | $11 \pm 0.4$ | $1.2 \pm 0.2$ | 55 ± 0.5  | $17 \pm 0.1$ | $7.1 \pm 0.42$ |
| Sugarcane tops             | 3  | 81 ± 3.0     | $5 \pm 0.1$  | $72 \pm 0.4$ | $39 \pm 0.4$ | $4 \pm 0.1$  | 0.6*          | 43*       | $17 \pm 0.3$ | 5.9*           |
| Napier grass               | 5  | $20 \pm 0.5$ | $17 \pm 0.6$ | 65 ± 0.3     | 37 ± 0.2     | 8 ± 0.2      | 0.7*          | 59*       | $14 \pm 0.1$ | 7.0*           |
| Sweet potato vines         | 3  | 26 ± 1.6     | $10 \pm 0.2$ | $41 \pm 0.5$ | $28 \pm 0.2$ | $10 \pm 0.2$ | 1.9*          | 65*       | $17 \pm 0.1$ | 8.9*           |
| Mixed browsed leaves       | 16 | $38 \pm 3.0$ | 7 ± 0.6      | $37 \pm 1.0$ | 26 ± 0.7     | $14 \pm 0.6$ | 2.2*          | 53*       | $19 \pm 0.2$ | 7.0*           |
| Banana stalks              | 6  | 9 ± 2.4      | $11 \pm 1.0$ | 66 ± 2.0     | 38 ± 2.3     | $3 \pm 0.3$  | 0.8*          | 54*       | $15 \pm 0.3$ | 7.1*           |
| Banana leaves              | 3  | $14 \pm 1.5$ | $16 \pm 0.4$ | 56 ± 0.6     | 35 ± 1.1     | $11 \pm 1.0$ | 4.5*          | 42*       | 17*          | 4.3*           |
| Balanite aegyptiaca leaves | 2  | $48 \pm 8.4$ | 7 ± 0.5      | 59 ± 0.9     | 40 ± 0.9     | 8 ± 0.6      | 0.8*          | 43*       | 19*          | 5.5*           |
| Rice stover, husks         | 1  | 88*          | 11*          | 69*          | 36*          | 4*           | 0.6*          | 48*       | 17*          | 6.1*           |
| Mangifera indica leaves    | 1  | 48*          | 15*          | 37*          | 27*          | 6*           | 2.4*          | 44*       | 16*          | 4.8*           |

ADF, acid detergent fiber; CA, crude ash; CP, crude protein; DM, dry matter; dOM, digestible organic matter; EE, ether extract; FM, fresh matter; GE, gross energy; ME, metabolizable energy; NDF, neutral detergent fiber; SEM, standard error of the mean. \* Samples were pooled to give one sample each (i.e., calculation of SEM not possible).

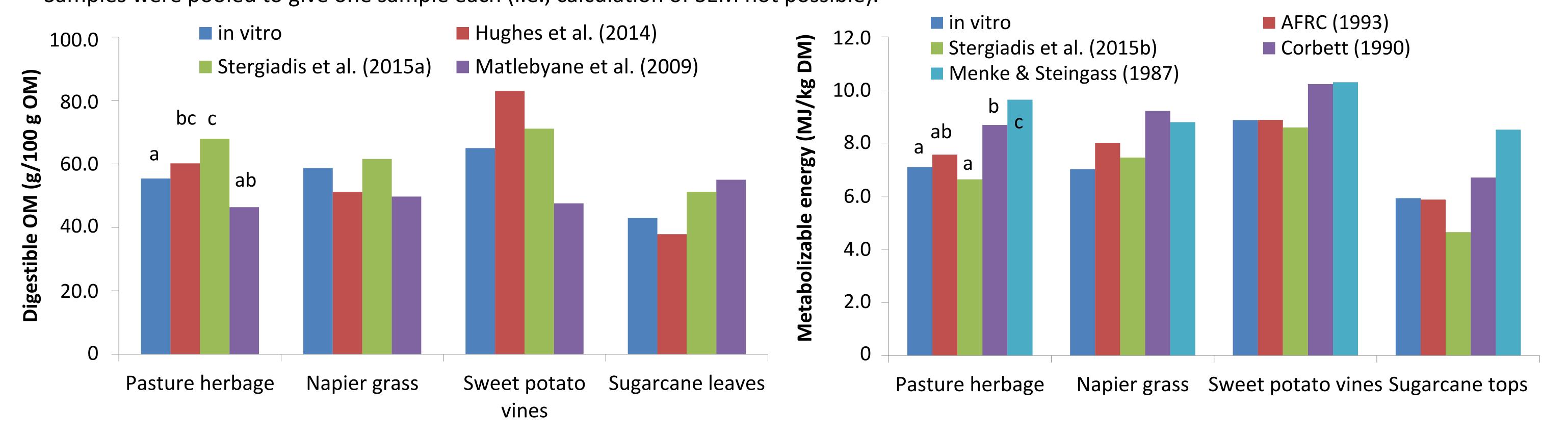



Figure 1: Comparison of a) digestible organic matter (OM) and b) metabolizable energy as estimated from *in vitro* gas production or some published prediction equations for ruminant feedstuffs in Lower Nyando, Western Kenya.

## **Discussion and conclusions**

- Nutrient concentrations were highly variable here and in literature maybe due to, amongst others, differences in climate, soil fertility, pasture species composition, and stage of maturity.
- The CP, dOM, and ME for pasture herbage, Napier grass, and sweet potato vines were of moderate nutritional value for ruminants. • The prediction equations for dOM yielded similar results, that were however, always higher in vitro estimates for pasture herbage which may be, for instance, a result of the presence of anti-nutritional factors.
- Equation-derived estimates of ME from dOM were similar as opposed to those from chemical parameters alone.
- There is need for further characterization of tropical feeds and region-specific equations for prediction dOM or ME.

