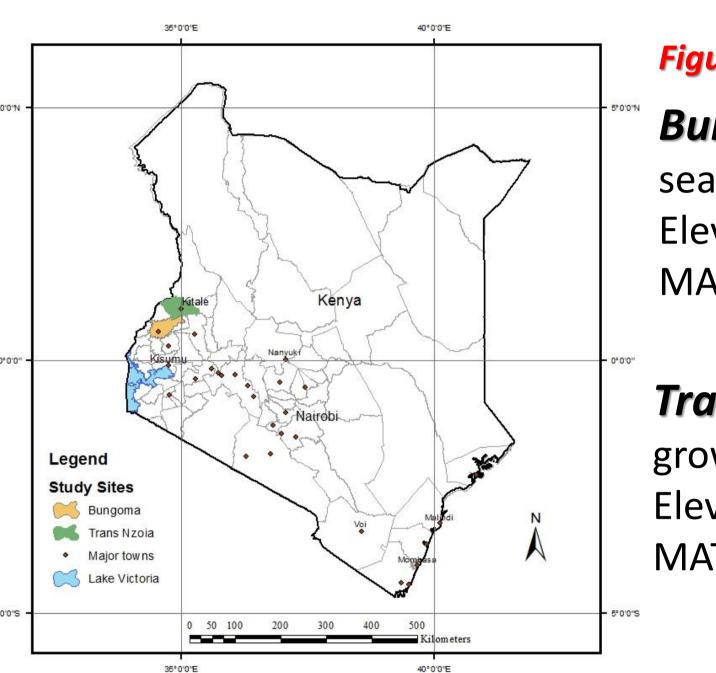
# **Conservation Agriculture Practices in Smallholder Farming of Western Kenya: Nutrient Cycling and Greenhouse Gas Fluxes**

Urszula Norton<sup>1&2</sup>, Judith Odhiambo<sup>1</sup>, Jay Norton<sup>3</sup>

<sup>1</sup>Department of Plant Sciences, University of Wyoming, USA; <sup>2</sup>Program in Ecology, University of Wyoming, USA; <sup>3</sup>Department of Ecosystem Science and Management, University of Wyoming, USA




### Rationale

### Location

# Yields, Weed Dynamics and Costs

- Long-term history of continuous cropping and deep inversion plowing in conjunction with current weather uncertainties are major threats to sustainability of rain-fed small-scale farming systems in Sub-Saharan Africa (SSA).
- Conservation Agriculture (CA) is gaining a widespread acceptance not as an alternative, but rather necessity to increase food production by food-insecure smallholder farmers.
- Limited understanding of



#### Figure 1: Study sites

**Bungoma** (two growing seasons : Long and Short) Elevation: 1433 meters asl; MAT: 27<sup>o</sup>C & MAP:1200mm

#### Trans-Nzoia (one long growing season)

Elevation: 1890 meters asl; MAT:20<sup>o</sup>C & MAP: 1500mm

## **Treatments**

### TILLAGE:

kg soil <sup>-1</sup>)

PMN (mg NH₄-N

25

20

15

**CT**-inversion-type tillage (to 25 cm) for land preparation and deep hoeing for weed control MT-shallow tillage (to 10 cm) and a combination Table 3: Operational costs associated with land management

of shallow hoeing and chemical weed control **NT**- no till and chemical weed control

#### Table 2: Crop yields for Bungoma (2 seasons) and Trans-Nzoia (one long growing season)

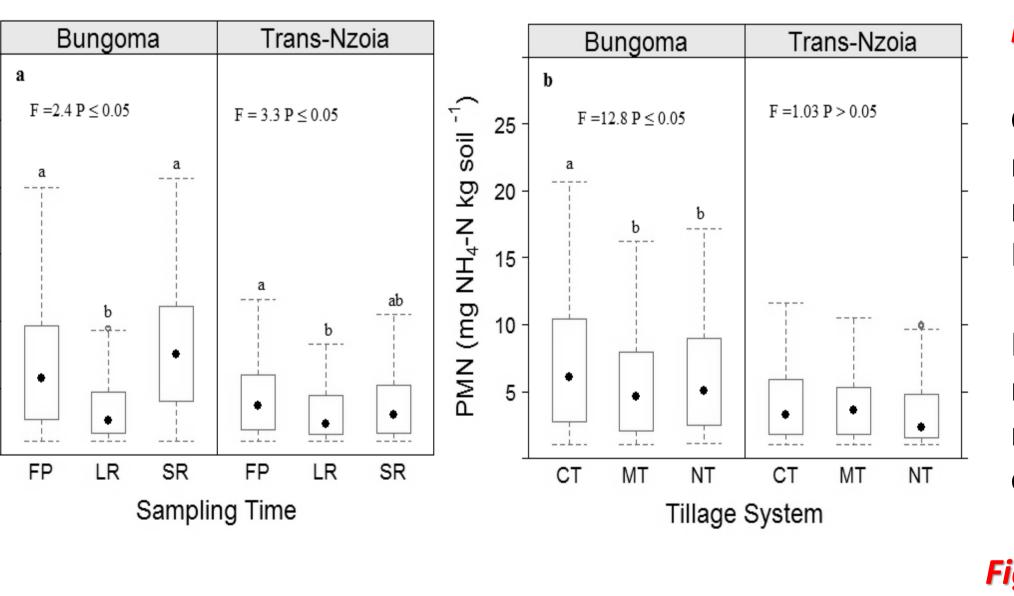
|                                               | Cumulative yields (tons ha <sup>-1</sup> )              | Bungoma                    | Trans-Nzoia                      |  |  |  |  |  |
|-----------------------------------------------|---------------------------------------------------------|----------------------------|----------------------------------|--|--|--|--|--|
|                                               | Maize<br>Beans                                          | 1.33b<br>0.2b              | 2.00a<br>0.7a                    |  |  |  |  |  |
|                                               | $\cdots \cdots CT \longrightarrow MT NT$                | 0.20                       | 0.74                             |  |  |  |  |  |
| 350<br>300 ats m <sup>-2</sup> )              |                                                         | -                          | Populations of                   |  |  |  |  |  |
| Grasses (plants m <sup>-2</sup> )<br>05<br>06 | ) -                                                     |                            | rasses and forbs<br>zoia only )  |  |  |  |  |  |
| •                                             | a                                                       |                            |                                  |  |  |  |  |  |
| 150<br>100                                    | b $\overline{\ddagger}$ a $\overline{\ddagger}$ a       | No change in weedy species |                                  |  |  |  |  |  |
| 50                                            | b*                                                      | populatio                  | ons in CT over time              |  |  |  |  |  |
|                                               | )  ,<br>) _                                             | Significar                 | nt declines in a                 |  |  |  |  |  |
| (plants m <sup>-2</sup> )<br>00<br>01         | $\mathbf{b} = \begin{bmatrix} \mathbf{b} \end{bmatrix}$ |                            | of grasses and forbs             |  |  |  |  |  |
| (d) 250<br>Forbs (p) 200                      | b b                                                     |                            | d NT following<br>ate technology |  |  |  |  |  |
| 15                                            |                                                         | • • •                      | and herbicide                    |  |  |  |  |  |
| 10                                            | <b>b</b> *                                              | applicatio                 | on training                      |  |  |  |  |  |
| 50                                            | )                                                       | 1                          |                                  |  |  |  |  |  |
|                                               | 2011 2012 2013<br>Experiment year                       |                            |                                  |  |  |  |  |  |

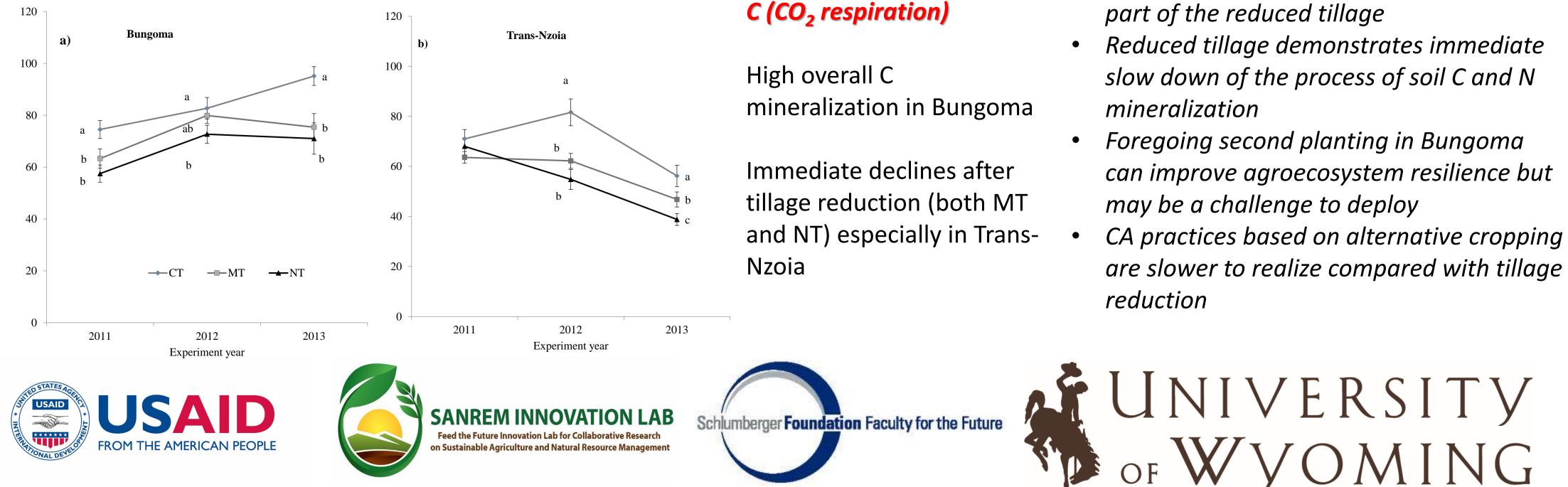
|                 |                         |            |           |       |       |           | COSTS |                             |           |       |       |  |
|-----------------|-------------------------|------------|-----------|-------|-------|-----------|-------|-----------------------------|-----------|-------|-------|--|
|                 | Mode/Active Ingredient  |            | СТ        |       |       | MT        |       |                             | NT        |       |       |  |
| Management      |                         | Freq./Rate | Materials | Labor | Total | Materials | Labor | Total                       | Materials | Labor | Total |  |
|                 |                         |            |           |       |       |           |       | US Dollars ha <sup>-1</sup> |           |       |       |  |
| Weed Control du | Iring Land Preparation: |            |           |       |       |           |       |                             |           |       |       |  |

short-term agroecosystem response during transition to CA can impede the process of farmers' adoption.

# **Objectives**

Explore short-term impacts of CA practices on:


- Early indices of the soil lacksquarechange
- Crop competition with  $\bullet$ weeds
- Operational costs


# Methods

### Three sampling campaigns (May, September, January) for three years

| Location    | Cropping system | Long Growing Season  |                      |  |  |  |  |
|-------------|-----------------|----------------------|----------------------|--|--|--|--|
| Trans-Nzoia | СТ              | Maize1/Beans1        | Maize1/Beans2        |  |  |  |  |
|             | RELAY           | Maize1/Beans         | Maize1/Mucuna        |  |  |  |  |
|             | STRIP           | Maize1-Beans1-Mucuna | Maize1-Beans2-Mucuna |  |  |  |  |
|             |                 | Long Rains           | Short Rains          |  |  |  |  |
| Bungoma     | СТ              | Maize1/Beans1        | Maize2/Beans2        |  |  |  |  |
|             | RELAY           | Maize1/Beans         | Maize2/Mucuna        |  |  |  |  |
|             | STRIP           | Maize1-Beans1-Mucuna | Beans2-Mucuna-Maize2 |  |  |  |  |

# Soil Mineralizable N and C





| Tillage                | Animal Drawn Moldboard Plow       | 2x                     |      | 144.00 |        |        |        |        |        |        |        |
|------------------------|-----------------------------------|------------------------|------|--------|--------|--------|--------|--------|--------|--------|--------|
| Harrowing              | Hand Hoe                          | 1x                     |      | 72.00  | 144.00 |        |        |        |        |        |        |
| Planting               | Hand Hoe                          | 1x                     |      | 50.00  | 72.00  |        | 50.00  | 50.00  |        |        |        |
|                        | Jab Planter                       | 1x                     |      |        | 50.00  |        |        |        |        | 50.00  | 50.00  |
| TOTAL                  |                                   |                        | 0.00 | 266.00 | 266.00 | 0.00   | 50.00  | 50.00  | 0.00   | 50.00  | 50.00  |
|                        |                                   |                        |      |        |        |        |        |        |        |        |        |
| Weed Control aft       |                                   |                        |      |        |        |        |        |        |        |        |        |
|                        |                                   |                        |      |        |        |        |        |        |        |        |        |
| Tillage                | Hand Hoe                          | 2x (CT)                |      | 216.00 | 216.00 |        | 108.00 | 108.00 |        |        |        |
| Herbicides:            |                                   | 1x (MT)                |      |        |        |        |        |        |        |        |        |
| Dual Gold <sup>®</sup> | S-Metachlor 960 g L <sup>-1</sup> | 576 g ha <sup>-1</sup> |      |        |        | 54.20  | 36.50  | 90.70  | 54.20  | 36.50  | 90.70  |
| Touchdown <sup>®</sup> | Glyphosate 500 g L <sup>-1</sup>  | 750 g ha <sup>-1</sup> |      |        |        | 48.40  | 36.50  | 84.90  | 48.40  | 36.50  | 84.90  |
| Basagran <sup>®</sup>  | Bentazone 400 g L <sup>-1</sup>   | 600 g ha <sup>-1</sup> |      |        |        |        |        |        | 33.80  | 73.00  | 106.80 |
| TOTAL                  |                                   |                        | 0.00 | 216.00 | 216.00 | 102.60 | 181.00 | 283.60 | 136.40 | 146.00 | 282.40 |
| <b>GRAND TOTAL</b>     |                                   |                        | 0.00 | 482.00 | 482.00 | 102.60 | 231.00 | 333.60 | 136.40 | 196.00 | 332.40 |

#### Figure 2: Soil Potentially Mineralizable N (PMN)

Greater organic N mineralization during short rains (SR) and fallow (FP) in Bungoma

Minimum tillage (MT) and no-till (NT) reduce soil N mineralization in Bungoma only

Figure 3: Soil Mineralizable

Table 3 discussion: Costs of weed management reduced by \$148.40 ha<sup>-1</sup> in minimum till and \$149.60 ha<sup>-1</sup> in notill compared with conventional tillage

Most of the cost reduction from less manual labor and tillage operations

# Conclusions

- The earliest indices of change relate to successful technology transfer associated with chemical weed management as a part of the reduced tillage
- Reduced tillage demonstrates immediate slow down of the process of soil C and N mineralization



(PMN)

Soil (0-10 cm) analyzed for potentially mineralizable N

**Gas samples** analyzed for CO<sub>2</sub>

Weed population: every May