

Tropentag 2016, Vienna, Austria

September 18-21, 2016

Conference on International Research on Food Security, Natural Resource Management and Rural Development organised by the University of Natural Resources and Life Sciences (BOKU Vienna), Austria

Horticultural Crops Diversity and Cropping Systems in the Smallholder Home Gardens in the Transitional Area of Yayu Coffee Forest Biosphere Reserve, Ethiopia

Edossa Etissa, Tadesse Weldemariam, Akalu Teshome and Techane Gonfa

Environment and Coffee Forest Forum (ECFF), Ethiopia Contact Address: Edossa Etissa, ECFF, Addis Ababa, Ethiopia, e-mail: edossa.etissagmail.com

Abstract

Yayu Biosphere Reserve (YBR) is part of the Eastern Afromontane Biodiversity hotspot located in Illuababor, Oromia, Ethiopia. This reserve is a centre of coffee genetic resources and the origin of many other indigenous horticultural crops. The YBR has three parts with the Central Core, followed by Buffer and the external Transitional area. The Transitional area covering 70.5% of the reserve is dominated by smallholder homegarden with different land-use systems. These smallholders grow horticultural crops, cereal and legume crops together. Survey was conducted in homegarden of these smallholders to identify diversity and crop combinations of horticultural crops, collect information and to identify potentials and intervention areas. Multistage sampling was used, first selection of two districts, followed by selection of two villages in each district to arrive at a total of 40 sample homegardens. A detailed data on the crops diversity, combinations and cropping systems and other qualitative data were collected. The survey results also showed that many horticultural crops grow in all homegardens and a total of economically more than 25 fruit, 19 vegetable, 11 root and tuber crops, nearly 14 spices, herbs and many cereals, oil crops, stimulants and African indigenous fruits, vegetables, root and tuber, spices and herbs; more than 90 important cultivated crops were recorded with diversities of landraces in the sample homegardens. This clearly showed that food source diversification and smallholder income generation are an untapped potential that could substantially contribute to nutrition security including low livelihood status of all smallholders in the area. Diversity of cropping systems such as double cropping, inter cropping, multistory cropping and others observed in most homegarden. However, all farmers replied that there are no improved technologies for horticultural crop production. Almost all farmers use local land races with unimproved management practices obtaining very low yields and quality. Thus research should give attention on adding value to potential crops and the home garden cropping system in the area should also be further investigated with the identification of smallholder development interventions so that social development in parallel with resource conservation could be achieved.

Keywords: Biosphere, crop diversity, homegardens, smallholder farmers

1. Introduction

Ethiopia has three UNESCO registered Biosphere Reserves, namely Kefa, Shaka and YBR. The Yayu forest is also part of the Eastern Afromontane Biodiversity Hotspot. This region occurs across Africa from the north in Sudan to the south in the Cape region of South Africa, from east in Djibouti to the west in Cameroon and over 50% of the Afromontane region with elevations above 1500 m occurs in Ethiopia (Tadesse *et al.*, 1993). This YBR is one of the 34 hotspot areas in the world, identified by Conservation International (Mittermeier *et al.*, 2005). The YBR is part of the Eastern Afromontane Biodiversity hotspot located in Illu-ababor, Oromia, Ethiopia. This bio-diversity hot-spot reserve is the coffee genetic resources and center of origin for many other indigenous horticultural crops reported by many explorers and scientists. Core area is extremely protected and Buffer zone is also less protected and no crops cultivation is allowed inside area. The Transition area occupies 117,736 ha and contains crop-land, grazing-land, grassland, wetlands as well as urban and rural settlement areas (Tadesse *et al.*, 1993). The agricultural land

of Yayu settlement consists of only smallholder household farms with diverse and complex crops production systems and most crops are traditional landraces including Arabica coffee (Tadesse *et al.*, 2009; Tadesse *et al.*, 2008; Tadesse 2003; Tesfaye *et al.*, 2009). The agricultural landscape of smallholder surrounding the forest area is also important for the conservation of cultivated many horticultural crops landraces. The smallholder farmers in the this zone grow cereals, legumes, coffee, vegetables, fruits, root and tubers, spices and herbs and other crops together either as sole crop or in a combinations others in the homegardens with the shade trees. Thus, the objective of this paper is to identify diversity and crop combinations of horticultural crops cultivation in the Transitional Zone of YBR and to collect information on horticultural crops production in particular in the area of indigenous wild fruits and vegetables and to identify potentials and intervention areas for filling the gaps in the smallholders farming systems.

2. Materials and Methods

2.1. Description of the Yayu Humid Tropical Biosphere Reserve: The annual rainfall pattern in the area is long mono-modal with monthly high rain fall from March to mid of October with the peak rainfall from July to August and the least rain fall months are fall in the months of November, Dec. and January (Figure 1). This area receives high rainfall with more than 2000 mm per annum. Many fresh perennial streams and rivers originate and drain from within the region and flow into the River Nile.

2.2. Study Site Description and Sample Sites Selection: Yayu Biosphere Reserve is located in South West Oromia region of Hurumu, Yayu, Chora, Nopha, Alge Sachi and Doreni Woredas of Illu Abba Bora Zone. The biosphere is located within 8° 0' 42" to 8° 44' 23"N and 35° 20' 31" to 35° 18' 20"E. The YBR has three parts with the central Core area, followed by Buffer and the external Transitional area (*Anon*).

Figure 1. Mean monthly rain fall of Metu weather station (1999-2000) bordering the Yayu Biosphere Reserve

The study focused in the Transitional area of the Biosphere covering 70.5% of the Biosphere with smallholder household farmers farming with different land-use systems (Table 1).

Zone/ Area	Area (ha)	Percentage
Core area	27,733	16.6
Buffer Zone	21,552	12.9
Transition Area	117,736	70.5
Total	167,021	100

Table 1. Yayu Biosphere Reserve partitions with size of each zones/ area

Source; Tadesse *et al.*, (1993)

Multistage sampling was used, first by selection of two representative districts (Weredas¹) purposely selected in the biosphere: Yayu and Hurumu among the six Weredas residing in the Biosphere; 10 female and 10 male household farmers were taken from each Kebele totalizing 40 sample homegardens. Some of the descriptions of household populations of the sample Kebeles² are shown in the Table 2.

¹The Wereda (District) is an administrative unit which consists of a number of Kebeles, comprise about 10-30 ²Kebele is the lowest administrative unit in Ethiopia

			Number of HH		Η	Total population		
No.	Woreda	Kebele	Male	Female	Total	Male	Female	Total
1	Yayu	Waabo	194	36	230	450	548	1360
		Bonda Megelaa	451	85	536	938	1232	2948
2	Hurumu	Gaaba	388	138	526	782	1025	2616
		Waangegne	418	127	545	666	1033	1699
	Т	otal	1451	386		2836	5787	

Table 2. Estimated number of households and population in the four sample Kebeles lying in the Yayu Biosphere

Source: Yayu ECFF Office

2.3. Methods of Data Collections: The sequential steps were followed in carrying out the informal survey activity. Focus group discussions (FGD) with household farmers representative and key informant interviews on general horticulture themes were arranged. Sample male headed and female headed household farmers were grouped in to five to six members. Focus group discussions (FGDs) were used as major tool to collect qualitative information and discuss opinions, ideas, constraints and solutions with major fruits and vegetable sectors. The discussions facilitated and arranged by each Kebele Manager and Chairperson at specified time. Focus group discussions were held with many farmers' groups (five to seven groups from each Kebele). Key informant interviews such as Kebele Development Agent (DA), Kebele Manager, elder people who lived long years in the area. Personal observations, by transect walk in the transition area were made along the farm fields, backyard and fences to generate additional information on the overall sources the fruit vegetable crops including wild types. The secondary data were combined with the data from the personal observations are used in the analyses of the current situation of the fruit vegetable crops including the wild grown vegetables in the area. Period of the FGD and key informants interview took place from 14 November 2015 to 6 December 2015 and continued while meeting with both male and female farmers, meeting with the stakeholder officials.

3. Results and Discussion

3.1. Variations among Households and Job Differences Between Female and Male Farmers: The households residing in the Biosphere have many differences, among land holding, size of coffee farm land, livelihood and overall economy, thus different members of a household have different perceptions of problems, opinions and different resources to address the problems. Plowing with oxen, cultivating cereals and coffee in the fields in particular far a away, guarding wild animals from farm fields throughout the crop life cycle is duty of males. The management of cash crops of the household such as coffee and maize, sorghum are usually the man's domain. Whereas home gardening with planting of variety of fruit and vegetable crops are most often considered as a "woman's duty". These homegardens are planted and maintained by members of the household especially by women and their products are intended primarily for household consumption.

3.2. Multistory Structures and Functions of the Homegardens: The household homegarden survey conducted revealed that many crops such as coffee, avocado, mango, banana, Enset, root and tubers, and many other crops grow in the sample homegardens of the households. The main structural arrangements in most home gardens are primarily coffee mixed with trees and shrubs, fruit trees or planted in strips, or planted as a boundary and fence, edges of plots and fields mainly for coffee shades, and live fence. From these trees including fruit trees farmers get food, fodder for their livestock, fuel wood and other wood products and other uses such as a windbreak and shades.

3.3. Coffee, Major Cereal and Legume Grains, and Oil Crops Production: The Yayu Biosphere area is rich in coffee genetic diversity and home of coffee genetic reserve (Tadesse *et al.*, 2008; and Tadesse, 2003; and Tadesse *et al.*, 2002). Many exotic cereal grains crops such as maize, barley, wheat, etc... are important food crops cultivated by all household farmers including sorghum and Teff which is indigenous to the country among the cereals. Maize is number one food crop in the area followed by sorghum. Almost all household farmers cultivate maize and sorghum for annual household consumption. There are a number of beans and legume crops also planted in the field for consumption. There are more than 15 crop species of cereals, legumes and oil crops are cultivated in the area.

3.4. Horticultural Crops Diversity in the Biosphere Reserve: The survey results showed that many horticultural crops grow in all homegardens with variable structures and functions. This Biosphere reserve is a genetic reserve for many root and tuber crops, spices and many other herbal plants in Ethiopia

(Tadesse, 2003, and Tadesse *et al.*, 2002). Even almost exotic fruits (avocado, papaya, guava, passion fruits, etc...), root and tuber crops (cassava, taro, Tania, etc...) and many vegetables are naturalized and probably created secondary centre of diversity in the area.

3.4.1. Major vegetable crops: There are diversities of vegetable crops grown in the most homegardens in the sample Kebeles and households in area, among the vegetable crops hot and green paper (both chilies and bigger pepper with high variability), garlic, shallot, head cabbage, onion, tomato, varieties of Kales, spinach, lettuce, Lima bean, carrot, beet root, pumpkin, etc... are grown mostly for home consumption in the home garden by almost all farmers in the transitional area (Annex Table 1). If the vegetable yields are in excess of home consumption, women would take to the local markets for income generation. Planting vegetable for the household consumption is also entirely the job of women.

3.4.2. Major cultivated roots and tuber crops: All exotic root and tuber crops are cultivated in all farmers compound/ home garden in the transitional reserve area. There is no household without varieties of root and tuber crops indicating that most FGD replied that these crops are hunger alleviating in particular during the food shortage period July to August. Many of the root and tuber crops are indigenous to Ethiopia: among Anchote (*Coccinia abyssinica*), Enset, Aerial yam, etc... are endemic to Ethiopia with high genetic variability and diversity. Many other exotic root crops such as taro, Tania, cassava, sweet potato and root yam, etc... are grown and even naturalized in the area (Annex Table 2).

3.4.3. Fruits: Fruit crops grown sporadically in every homestead of the farmers. Some of the fruits are economically important (Zakarias, 2010). There is diversity of fruits in the area but coffee is the dominant one. Some of the fruits observed in the area are listed in the (Annex Table 3) with their scientific and common names. Among the fruits, avocado (with high variability), banana, papaya, orange, lime, lemon, *Anona*, casamiroa, peach, etc... are grown sporadically. Among the fruits: avocado, banana and mango seem the dominant and their favorite fruit crops planted by all households that grow in their homestead.

3.4.4. Spices, herbs, stimulants and oil bearing plants: The transition part of Biosphere Reserve has a lot of spices and herbs flora; among Korarima (*Aframomum korarima*) spice ranks first and other spices such as chilies, ginger, turmeric, coriander, etc... are grown widely (Annex Table 4). Many herbal and medicinal plant sp. are grown in the farmer's homesteads under fence and along the fence. Further study is required to explore the diversity of these species in the Biosphere area. Many exotic spices crops such as black pepper, cinnamon, cardamom, vanilla, etc... grow in the south western part of the country with similar agro-ecology with Yayu and most of them fit with coffee production system i.e., multi-storied cropping systems. There are stimulants crops planted by most household farmer and many other African indigenous fruits, vegetables, root and tuber, spices and herbs, etc... crops were recorded in the sample home gardens during the FGD and transect walks around the home gardens (Annex Table 5).

3.4.5. Minor African indigenous fruits, root and tuber and vegetable crops: Based on the group discussions, all household farmers identified lists of less important wild fruits, vegetables, spices and herbal crops growing in the forest, in the farm field and in the pasture as weeds (Annex Table 7). If anyone further explores more home gardens he/ she surely gets additional species that utilized by farmers.

3.5. Main Home Garden Cropping Systems and Practices: The home garden cropping refer to intimate association of horticultural crops production, multipurpose trees and shrubs with annual and perennial crops and, invariably livestock within the compounds of individual houses, with the whole crop-tree-animal unit being managed by family labor (Fernandes and Nair, 1986).

3.5.1. Mixed and intercropping cropping: Every explorers find intercropping of many and diverse crops from herbaceous to fruits and big Acacia coffee shade trees in the homegarden. Even there is almost no sole maize field, but maize is intercropped with climbing beans and sometimes with Ethiopian Kale.

3.5.2. Double cropping: Since Yayu area receives long periods of rainfall farmers plant twice per year, in particular short maturing crops including Feba and Teff. Farmers identified compatible crops in the double cropping. Some of them plant short maturing Teff variety, then after Teff harvesting they plant Feba bean or vice versa. Some farmers plant long cycle maze and sorghum.

3.5.3. Crop rotations: Most FGD household farmers have responded confidently that they have traditional skill that they rotate cultivation of cereal-legume crop species and they do not plant same crop species on same plot land continuously.

3.6. Major constraints of Homegardens Horticultural Crops Productions in the Area

3.6.1. Wild Animals: All FGD members stressed that crops damage due to wild animal is number one problem in the area. All farmers guard their farm fields and homegardens 24 hours a day from planting up to harvesting each crops from diversities of mammals, birds and other animals affecting the crops.

3.6.2. Lack of improved crop varieties and inputs supply: All FGD explained that seeds of all horticultural crops and other agricultural input supply is very weak not available at all from year to year and there is no improvement over time. Farmers plant unimproved crops such as avocado, mango, papaya, banana, etc... fruits, vegetables, root and tuber crops and all other crops.

3.6.3. Poor food consumption behaviors: There are many underutilized horticultural crops (cassava, taro, cocoyam, yams, both banana types, etc...) grow everywhere (along the roads, small rivers and gullies) with minimum care; but the community do not consume including all AIVs, except Kale and Cucurbits fruits. Eating wild plants is a source of shame in the area as expressed by all farmers.

3.6.4. Poor soil fertility with high price of fertilizers: Each member of the FGD stressed that if the farmland is continuously plowed, the soil becomes poor and does not give yield at all. This is because of high rainfall the area the soil is assumed to be acid. There is no improved fertility treatment of this soils.

3.6.5. Weak research attention and extension service for horticultural crops production: All household farmers use land races of all horticultural crops, such as fruits, vegetables root and tubers, spices and herbs, except imported hybrid H. Cabbage seed sourced from few seed shops. Homegarden are very complex systems with a large number of components. These indicate that there is no research and extension system addressing household multiple problems in the area.

4. Conclusions and Recommendations

Survey was conducted in homegardens of YBR smallholder farmers to identify diversity and crop combinations of horticultural crops cultivation and collect information on the African indigenous vegetables and to identify potentials and intervention areas. Multistage sampling method was used, among the six districts, first two districts Yayu and Hurumu were purposely selected. These followed by selection of two Kebeles in each district to arrive at a total of 40 focus group sample smallholders. Qualitative data on the crops diversity, combinations and cropping systems were collected. The FGDs indicated that the main structural arrangements in most home gardens of Yayu Biosphere smallholders are primarily coffee mixed with trees and, fruit trees planted in mixed, or planted as a boundary and fence, edges of plots/ fields mainly for coffee shades, and live fence. From these trees including fruit trees farmers get food, fodder for their livestock, fuel wood and other wood products and other uses such as a windbreak and shades. All the male and female FGDs farmers responded that many horticultural crops grow in all their home gardens and with an approximate 90 economically important crop species. All FGDs members practice various complex cropping systems and practices such as mixed cropping, intercropping, double cropping and crop rotations. The FDG results indicated that all farmers practice are guided, in the absence of a unified set of expert recommendations, by their own perceptions and convictions about species selection, admixture, and management. Home garden horticultural and other crops productions in the area are facing many challenges among the main constraints, crop damage due to wild animals, lack of improved crop varieties and inputs supply, traditional crop management practices, poor information networking, poor food consumption behaviors, poor soil fertility with high price of fertilizers and poor research attention and extension service provided in the area. Thus research should give attention on adding value to potential crops and the home garden cropping system in the area and should also be further investigate with the identification of smallholder development intervention prioritization so that social development in parallel with resources conservation should be emphasized.

5. Acknowledgments

This work was financially supported by the German Federal Ministry of Food and Agriculture (BMEL) based on the decision of the Parliament of the Federal Republic of Germany.

6. References

Barthlott, W, N Biedinger, G Braun, F. Feig and G Kier, 1999. Terminological and methodological aspects of the mapping and analysis of the global biodiversity, *Acta Botanica Fennica*

Fernandes, E.C.M. and Nair, P.K.R. 1986. An evaluation of the structure and function of tropical homegardens. *Agricultural Systems* 21:279-310

- Fishpool, L. D. C. and Evans, M. I., eds. (2001) Important Bird Areas in Africa and associated Islands: Priority sites for conservation. Newbury and Cambridge, UK: Pisces Publications and BirdLife International (BirdLife Conservation Series No. 11)
- Gebrecherkos Woldegeorgis and Tilaye Wube, 2012. A Survey on Mammals of the Yayu Forest in Southwest Ethiopia. *SINET: Ethiop. J. Sci.*, 35(2):135–138
- EWNHS (Ethiopian Wildlife and Natural History Society, 1996. Important 99 Bird Areas of Ethiopia: A first inventory: Addis Ababa: Ethiopian Wildlife and Natural History Society and BirdLife International.
- Mittermeier R. A., Frank Hawkins, Serge Rajaobelina, and Olivier Langrand, 2005. Wilderness Conservation in a Biodiversity Hotspot: *International Journal of Wilderness* 2005: 11 (3)
- Nair, P. K. R. 1993. An Introduction to Agroforestry. Kluwer Academic Publishers, in cooperation with International Centre for Research in Agroforestry (ICRAF), pp 489
- Tadesse Woldemariam Gole, Feyera Senbeta, Kassahun Tesfaye, Fite Getaneh, 2009. Yayu Coffee Forest Biosphere Reserve Nomination Form-September 2009, Ethiopian Coffee Forest Forum, Addis Ababa. Website: http://www.ecff,org.et
- Tadesse Woldemariam Gole, Borsch, T., Denich D. and Demel Teketay, 2008. Floristic composition and environmental factors characterizing coffee forests in southwest Ethiopia. *Forest Ecology and Management* 255: 2138-2150
- Tadesse Woldemariam Gole, 2003. Vegetation Ecology of the Yayu forest in SW Ethiopia: impacts of human use and implications for *in situ* conservation of wild *Coffea arabica* L. populations. *Ecology and Development Series*, No. 10. 162 PP
- Tadesse Woldemariam Gole, Denich, M., Demel Teketay and Vlek, P.L.G, 2002. Human impacts on *Coffea arabica* genetic pool in Ethiopia and the need for its *in situ* conservation. pp. 237-247. (*In*) Managing plant genetic diversity (J. Engels, V. Ramanatha Rao, A. H. D. Brown, and M. Jackson, (*Eds*). CAB International / IPGRI
- Tesfaye Abebe, K. F. Wiersum, F. Bongers, 2009. Spatial and temporal variation in crop diversity in agroforestry home gardens of southern Ethiopia, *Agroforest Syst* 78:309–322
- Zakarias Shumeta, 2010. Avocado production and marketing in the Southwestern Ethiopia, *Trends in Agricultural Economics* 3 (4): 190-206

7. Annex Tables

Annex Table 1. Some of major cultivated vegetable crops in the sample home gardens of YBR, Ethiopia

No.	Scientific name	Common name	Family
1	Allium cepa varascalonicum L.	Shallot	Alliceae
2	Allium cepa L.	Onion	Alliceae
3	Allium sativum L.	Garlic	Alliceae
4	Lycopersicon esculentum Mill	Tomato	Solanaceae
5	Capsicum frutescens L.	Hot pepper	Solanaceae
6	Capsicum annum	Green pepper	Solanaceae
7	Brassica oleranceae var.capitata	Cabbage	Crucifereae
8	Brassica carinata A. Br.		Crucifereae
9	Brassica integrifolia (West) O.E. S	Ethiopian Kale (Gomen)	
10	Brassica oleracea L.		
11	Brassica nigra	Ethiopian mustard (?)	'Senafich'
12	Beta vulgaris L.	Beet root	Chenopodiaceae
13	Daucus carota L.	Carrot	Umbelliferae
14	Lactuca sativa L.	Lettuce	Compositae
15	Beta vulgaris var. cicla L.	Swiss chard	Chenopodiaceae
16	Phaseolus Spp.	Lima bean and other beans	Feba ceae
17	Abelmoschus esculentus	Okra	
18	Allium porrum L.	Leek	Alliaceae
19	Moringa stenopetala (Bak. f.) Cufod	Moringa	

Annex Table 2. Some of cultivated root and tuber crops in the sample home gardens of household farmers YBR

No.	Scientific name	Common name	Family
1	Solanum tuberosum L.	Potato	Solanaceae
2	Ipomoea batatas Lam.	Sweet potato	Convolvulaceae
3	Ensete ventricosum (Welw.)	Enset	Musacea
4	Colocasia esculenta	Cocoyam, Taro	Araceae
5	Xanthosoma spp.	Tania	Araceae
6	Coccinia abyssinica (Lam.) Cogn.	Anchote	
7	Dioscorea abyssinica Hochst. ex Kunth	Aerial yam	Dioscoriaceae
	Dioscoria bulbifera L.		
8	Dioscoreaal ata L.	Root yam	Dioscoriaceae
9	Manihot esculenta	Cassava	Euphorbiaceae
10	Musa sp.	Cooking banana	Musaceae
11	Plectranthus edulis	Ethiopian Potato	

Annex Table 3. Some of cultivated useful fruit and nut crops grown in the sample home garden of YBR, Ethiopia

No.	Scientific name	Common name	Family
1	Psidium guajava L.	Guava	Myrtaceae
2	Mangifera indica L.	Mango	Anacardiaceae
3	Musa acuminata L.	Dessert banana	Musaceae
4	Musa hybrids*	Cooking banana	Musaceae
5	Carica papaya L.	Рарауа	Caricaceae
6	Citrus sinensis Osbeck	Sweet orange	Rutaceae
7	Citrus reticulate Blanco	Mandarin	Rutaceae
8	Citrus limon Burm	Lemon	Rutaceae
9	Citrus aurantifolia Swigle	Lime	Rutaceae
10	Citrus auratium L.	Sour orange	Rutaceae
11	Citrus medica L.	Citron	Rutaceae
12	Persea spp Mill	Avocado	Laurceae
13	Prunus persica L.	Peach	Rosaceae
14	Psidium guajava L.	Guava	Myrtaceae
15	Passiflor aedulis Sims	Passion fruit	Passifloraceae
16	Anona Spp.	Bullok's heart	Annonaceae
17	Casamiroa edulis La Llave	Casamiroa (White sapota)	Rutaceae
18	Cucurbit pepo L.	Pumpkin	Cucurbitaceae
19	Macadamia nut	Macadamia	
20	Punica granatum L.	Pomegranate	Puniaceae
21	Ananas comosus (L.) Merr	Pineapple	Bromeliaceae
22	Opuntia ficus-indica (L.) Miller	Cactus	
23	Tamarindus indica L.	Ziziphus	
24	Eriobotrya japonica (Thunb.)		
25	Dovyalis abyssinica (A. Rich.)		

*= Some banana types in the area are multipurpose such as Du Case Hybrid

Annex Table 4. Some of cultivated spices and herbs in sample home garden YBR, Ethiopia

No.	Scientific name	Common name	Family
1	Irigonellafoenum-graecum L.	Fenugreek	Leguminose
2	Cuminum cyminum L.	White cumin	Umbelliferae/Parsleey/Apiaceae
3	Nigella sativa L.	Black cumin	Apiaceae
4	Lepidium sativum L.	Garden cress	Cruciferare
5	Rutachalepensis L.	Rue (Tena-Adam)	Rutaceae
6	Aframomum korarima	Korarima	Zingeberaceae
7	Ginger officinale	Ginger	Zingeberaceae
8	Curcuma domestica	Turmeric	Zingeberaceae
9	Capsicum frutescens L.	Hot pepper	Solanaceae
10	Capsicum annuum L.	Chilly	Solanaceae
11	Rosmarinus officinalis L.	Rosemary	Lamiaceae
12	Ocimum basilicum L.	Sweet basil	
13	Nigella sativa L.	Whit cumin	Ranunculaceae
14	Cymbopogon citratus (DC.) Stapf.	Lemon grass	

Annex Table 5. Some of stimulant other cash crops grown in the transitional Biosphere area

No.	Scientific name	Common name	Family
1	Khata edulis (Vahl.) Forssk.exEndl.	Khat (or Chat)	Celastraceae
2	Hibscus	Sudan Tea, (Karkad ?)	Hibscus
3	Rhamnus piroindes L' Herit	Hop, Rhamnus (Gesho)	Rhamnaceae
4	Nicotiana tobacum L.	Tobacco	Solanaceae
5	Saccharum officinarum L.	Sugarcane	Poaceae
6	Lagenaria siceraria (Mol.) Stardl.	Bottle gourd	Cucurbitaceae

Annex Table 6. Some of wild spp. of African indigenous fruits, roots and tuber, and vegetables in the YBR, Ethiopia

No.	Scientific name	Cultivation areas
1	Aframomum corrorima (C. Pereira)	Grow only in forest and under shades in the forest
2	Piper umbellatum L.	Grow every where
3	Coccinia abyssinica (Lam.) Cogn.	Homegarden crops
4	Physalis peruviana L.	Wild grow in forest
5	Amaranthus graecizans L.	Sporadically edible, famine food
6	Brassica carinata	Main vegetable crop with genetic diversity
7	Brassica nigra	Main vegetable crop with genetic diversity
8	Capsicum frutescens L.	Main vegetable crop with genetic diversity
9	Cucurbita maxima	Main vegetable crop with genetic diversity
10	Cucurbita moschata	Main vegetable crop with genetic diversity
11	Cucurbita pepo	Main vegetable crop with genetic diversity
12	Plectranthus edulis (Vatke) Agnew	Homegarden root crop
13	Dioscorea bulbifera L.	Homegarden root crop
14	Dioscorea abyssinica Hochst. ex Kunth	Homegarden root crop
15	Dovyalis abyssinica (A. Rich.) Warb.	Koshim (A, O, T), Edible, used as live fence
16	Opuntia ficus-indica (L.) Miller	Grow everywhere including the homegarden
17	Capsicum annuum L.	Homegarden and field crop
18	Amaranthus sparganiocephalus	Wild
19	Amaranthus viridis L.	Wild
20	Tamarindus indica L.	Edible grow every where
21	Zingiber officinale Roscoe	Garden spice, grow under shade
22	Corchorus olitorius L.	Wild and grow in forest
23	Moringa stenopetala (Bak. f.) Cufod.	Grow everywhere including the homegarden