

Degradation of the succulent fodder tree *Euphorbia stenoclada* in southwest Madagascar and approaches for improved management

Johanna F. GOETTER¹, O. Goum ANTSONANTENAINARIVONY², Herinavalona RABEMIRINDRA², Eva SCHLECHT³, Frank WÄTZOLD¹

¹ Brandenburg Technical University, ² University of Antananarivo, ³ University of Kassel/Georg-August-Universität Göttingen

INTRODUCTION

In the dry coastal zone of the rural Mahafaly Plateau region, livestock keeping contributes significantly to food security of local people. However, livestock keeping has become increasingly difficult:

Decreased rainfall and unsustainable harvesting of the wild succulent fodder tree *Euphorbia stenoclada* (*"Samata"*, Figure 1) led to its increasing degradation and thus scarcity of this most important dry season fodder resource.

We aim to identify the spatial pattern of the degradation of *Samata,* socioeconomic reasons for its mismanagement, and to develop approaches for improved management.

MATERIALS AND METHODS

Fig. 1 Harvested wild Samata stand

- Field survey: Measurement of diameter (DBH), biomass, regeneration and mortality on 68 sample plots (30 m*30 m) (Figure 2).
- Field experiments: Analysis of germination rates and shoot rejuvenation under different treatments.
- Interviews (n=111) with livestock keepers in 20 villages.

Fig. 2 Location of the samle plots

Fig. 3 Samata trees partially cut to death

KEY RESULTS

- Lowest average biomass found for young trees at 1000-1500 m distance from the villages (0.1t/ha) (Figure 4).
- Besides cutting at the branch level, also cuts at the apical meristem and at the trunk are common (Figure 3), resulting in the tree's death.
- Mortality rate of cut trees is up to 22%, 45% revive through shoot regeneration. However, low density of very young trees <5 cm DBH (134/ha) indicates difficulties in regeneration.

Federal Ministry

of Education

and Research

• Lack of local knowledge on artificial multiplication of *Samata*.

Financially supported by:

- Experiments show success with *Samata* germination and multiplication by cuttings, the latter technique being faster and technically easyier. Direct insolation and regular watering are needed.
- Formerly open access to all Samata stands, today many privatized by users. Unequal

	Distance (m) of from village	<1000	1000- 1500	1500- 2000	2000- 2500
	Number of plots	22	21	18	7
Density (individuals/ha)	Young individuals (<10 cm DBH)	386	394	364	352
	Mature individuals (>10 cm DBH)	76	42	46	101

access forces many users to overuse the open access ones and/or buy private resources, at home and further away (new transhumance movements).

- Mainly the many non-local users are blamed for unsustainable *Samata* harvesting. Restricting access for non-local users is not wanted (for socio-cultural & practical reasons).
- Community rules for sustainable harvesting are defined in few villages, but are not enforced.

CONCLUSIONS

Brandenburgische

Technische Universität

ottbus - Senftenberg

- Results suggest that degradation of wild, open access Samata stands will further aggravate.
- The complex socio-economic situation is hampering more sustainable harvesting.

I K A S S E L

• Local capacity building on *Samata* multiplication by cuttings will mitigate the degradation.

Fig. 4 Results from the field survey

SUSTAINABLE

LAND MANAGEMEN

FONA