

Tropentag, September 17-19, 2014, Prague, Czech Republic

"Bridging the gap between increasing knowledge and decreasing resources"

Assessment of Genetic Fidelity of Micropropagated Plants and *in vitro* Polyploidisation in *Monarda didyma* L.

Michaela Hrdličková¹, Eloy Fernández Cusimamani¹, Jana Ziarovská², José Luis Ros Santaella¹, Aleš Holík³

¹Czech University of Life Sciences Prague, Faculty of Tropical AgriSciences, Czech Republic
²Slovak Agricultural University, Fac. of Agrobiology and Food Resources, Slovakia (Slovak Republic)
³Czech University of Life Sciences Prague, Fac. of Agrobiology, Food and Natural Resources, Czech Republic

Abstract

Crimson beebalm (Monarda didyma L.) is a medicinal plant belonging to the family Lamiaceae, native to North America. Crimson beebalm has a high content of thymohydroquinone, dithymoquinone and thymoquinone. The main objective of this study was the development of an appropriate protocol for *in vitro* propagation of Crimson beebalm by using nodal segments and to obtain tetraploid plants (2n=64 chromosomes) from diploid plants (2n=32) by in vitro induced mitotic polyploidisation. For micropropagation the nodal segments were cultured on basal MS medium supplemented with different concentrations of 6-benzylaminopurine (BAP), kinetin (KIN), indolyl-acetic acid (IAA) and naphthalene acetic acid (NAA) and with cytokinins/auxins combination of BAP with IAA and KIN with NAA for shoot and root induction. For the polyploidisation nodal segments of Monarda were exposed to 40, 60 and 80 μ M oryzalin for 24 and 48 h. Genetic fidelity in regenerated plants was assessed using RAPD (Randomly Amplified Polymorphic DNA) markers. The highest multiplication rate was obtained from MS medium containing $0.5 \text{ mg} l^{-1}$ of KIN (1.90±0.31 shoots per plant) and $1.5 \text{ mg} l^{-1}$ of KIN (5.60±2.16 new nodes on longer shoots). The best root induction was achieved on medium supplemented with 1.0 mg l^{-1} IAA (6.70 ±4.84 roots per plant). Cultivation time was 60 days. The percentage of survival of plantlets under ex vitro conditions was 30%. Tetraploid plants (2n=64) were obtained in concentration of 40 and 60 μ M of oryzalin with treatment duration of 24 h. Triploid plant (2n=48) was obtained in concentration of 60 μ M of oryzalin with treatment duration of 48 h. In total, the polyploidisation efficiency was 1.92%. RAPD analysis confirmed the genetic stability in micropropagated and polyploid plants.

Keywords: Genetic fidelity, *in vitro*, Lamiaceae, micropropagation, *Monarda didyma*, oryzalin, polyploidisation, root induction, shoot induction

Contact Address: Michaela Hrdličková, Czech University of Life Sciences Prague, Faculty of Tropical AgriSciences, Kamycka 129, 165 21 Prague 6, Czech Republic, e-mail: hrdlickova.michaela@seznam.cz