ENVIRONMENTAL EMISSIONS FROM BROILER HOUSES IN BURSA, TURKEY

ILKER KILIC, ERKAN YASLIOGLU

Uludag University, Agriculture Faculty, Biosystems Engineering Department, Campus of Gorukle, 16059, Bursa, Turkey

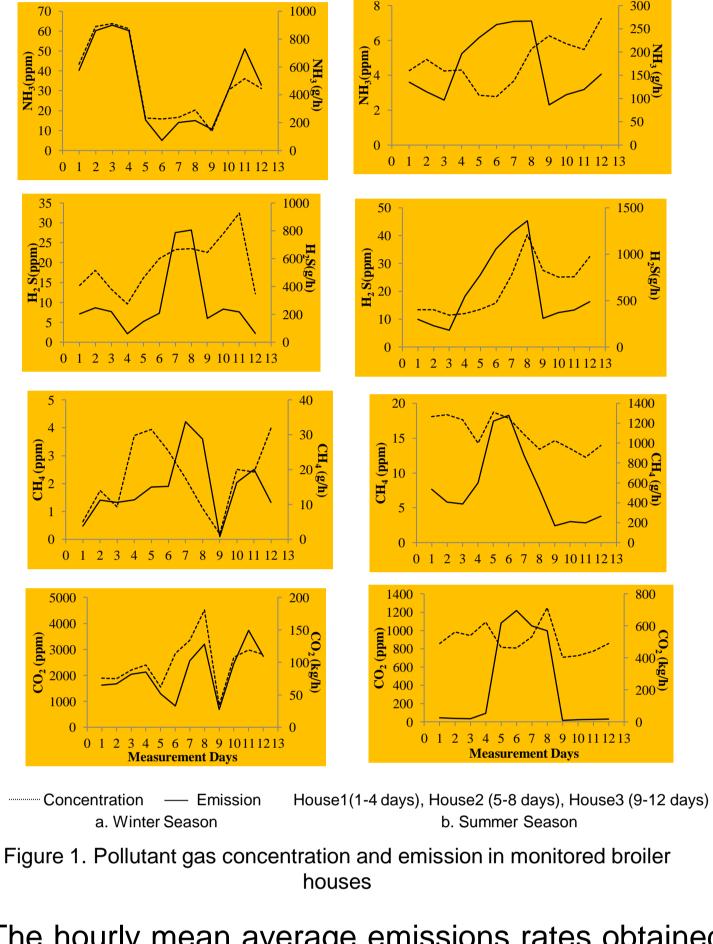
Introduction

Turkey is an important country for poultry production, especially broiler production. Broiler population in Turkey is about 170 million chicken. Most of these broiler chicken housed intensive production systems which have more chicken in per unit area of house. The intensive production systems cause some environmental problems such as pollutant gas emissions, particulate matter, VOC. Emissions of aerial pollutants from intensive poultry production facilities may compromise ambient air quality and pose potential threats to the health and welfare of the surrounding communities (EPA, 2005).

Results

Pollutant Gas Concentrations and Emissions:

The concentrations of pollutant gas in monitored broiler houses ranged from 2 to 93 for NH_3 , from 5 to 59 ppb for H_2S , from 0.38 to 21 ppm for CH_4 and from 500 to 9518 ppm for CO_2 during all study period. In Figure 1, pollutant gas concentrations and emissions obtained from this study were given according to winter and summer seasons (Figure 1). At the end of the study, it was found that there are statistically a significant variation among seasons for the pollutant gas concentrations and emissions (Table 2, P<0.01, P<0.05).


 Table 2. Seasonal variations among pollutant gas concentrations and emissions

Season		Concentrations				Emissions				
		NH ₃	H ₂ S	CH ₄	CO ₂	NH ₃	H ₂ S	CH ₄	CO ₂	
		(ppm)	(ppb)	(ppm)	(ppm)	(g.h ⁻¹)	(g.h ⁻¹)	(g.h ⁻¹)	(kg.h ⁻¹)	
	Ort	31.77a	19.75b	2.56	2495a	442a	279b	15.88b	82.71b	
Winter	Max	93	42	7.2	9518	2389	2727	130.2	500	
	Min	1.89	3.65	0.38	100	0.01	0.01	0.01	0.01	
	SD	10.04	2.96	1.04	1279	216	164	13.76	60	
	Ort	4.78b	21.32a	15.68	895b	169b	604a	557a	221a	
Cummer	Mak	10.39	58.59	20.8	1663	952	5024	3731	861	
Summer	Min	2.26	5.17	8.95	505	8.92	19.74	22.76	1.88	
	SD	1	6.39	1.44	242	100	294	354	57.2	
P value		**	*	NS	**	**	*	NS	*	

The objective of this study is to determine pollutant gas emissions from broiler houses in Bursa region, west of Turkey. This article also reports diurnal and seasonal variations of the pollutant gases emissions in broiler houses.

Materials and Methods

This study was conducted on three broiler houses (H1, H2 and H3) in Bursa, Turkey. During this study, approximately 12 000 birds were housed in H1 and H2. H3 held approximately 6 000 birds. All of the monitored houses used mechanical ventilation systems and had evaporative coolingpad systems. In this study, pollutant gases concentrations, temperature, relative humidity, and air velocity were continuously monitored for four consecutive days in all houses. A multi-function T and RH meter with a hot-wire probe (Model 350 XL-454, Testo, Germany) was used to measure environmental conditions such as temperature, humidity. The relative pollutant gases concentrations were measured using portable multiple gas detectors with electro-chemical sensors (Ibrid MX6, Industrial Scientific, Oakland, PA, USA). For exhaust gas concentrations and T and RH measurements, all instruments were located front of ventilation fans in monitored house. The pollutant gas emission rates (ER) were calculated as the mass of gas emitted from the broiler house per unit time, using the following relationship described by Hinz and Linke (1998).

The hourly mean average emissions rates obtained from all three houses for NH_3 , H_2S , CH_4 and CO_2 were 630 g.h⁻¹, 2.10 g.h⁻¹, 9.22 g.h⁻¹ and 141kg.h⁻¹, respectively. It seemed that the pollutant gas emissions rates from monitored broiler houses were lower than broiler houses in USA when compare with studies (Redwine et al., 2002, Burns et al., 2003, Li et al., 2008, Burns et al., 2008) in literature. The pollutant gas generation rates in animal barns vary with number of birds; type of housing; manure handling system; bird species, activity and behaviour. The Turkish broiler houses have different characteristics from American broiler houses, especially number of bird housed in the house.

Diurnal Pattern of Pollutant Gas Concentrations and Emissions:

The pollutant gas concentrations and emissions obtained in day and night measurements time were given in Table 3. The differences between day and night time concentrations and emissions were statistically significant, as seen in Table 3 (P<0.01, P<0.05). Diurnal pattern or variations were closely related to variations of house ventilation rates and indoor temperature. In the day time, ventilation rates were higher than those in the night time due to the indoor temperature. Therefore, pollutant gas concentrations in the day time were higher than those in the night time.

Table 3. The pollutant gas concentrations and emissions in day and night time

Time			Concen	trations		Emissions				
		NH ₃	H ₂ S	CH ₄	CO ₂	NH ₃	H ₂ S	CH ₄	CO ₂	
		(ppm)	(ppb)	(ppm)	(ppm)	(g.h ⁻¹)	(g.h ⁻¹)	(g.h ⁻¹)	(kg.h ⁻¹)	
Day Time	Avg	16.01b	19.40b	8.85	1241.2b	759a	5.16b	11.15	152.15a	
	Max	42.24	60.3	12.41	3417.23	3514	20.39	45.43	622.31	
	Min	2.1	4.28	4.59	300.62	7.53	0.03	0.02	1.28	
	SD	10.33	9.96	1.96	575.98	940	6.21	10.19	196.19	
Night Time	Avg	23.03a	25.04a	9.18	2193.2a	514b	10.84a	12.48	136.56b	
	Max	51.83	61.15	14.14	5615.41	2552	44.22	97.99	654.41	
	Min	3.05	7.7	4.43	434.1	4.46	0.01	0.01	0.96	
	SD	12.51	11.99	2.23	976.88	601	9.74	16.11	169.34	
P value		*	*	NS	**	**	**	NS	**	

ER: $(C_i - C_a).Q$

where ER is the emission rate (g/(h house)),C_i is the gas concentration (ppm),C_a is the ambient gas concentration (ppm), and Q is the airflow rate (m³/h house).

The data obtained for all variables of interest during the study period were analyzed using JMP 7.0 statistical software.

Seasonal Variation in Concentration and Emissions:

Table 1 shows seasonal average of each pollutant gas concentration and emission for each broiler houses monitored in this study.

Table 1.Seasonal average pollutant gas concentrations and emissions

	Season	Со	ncentrati	ons	Emissions			
Pollutant		H1	H2	H3	H1	H2	Н3	
NH ₃	Winter	57.63	17.31	26.77	798.59	176.48	445.60	
(ppm, g.h ⁻¹)	Summer	4.43	3.71	6.20	135.57	255.93	116.79	
H ₂ S	Winter	13.84	20.99	23.63	182.22	487.10	172.97	
(ppb, mg.h ⁻¹)	Summer	12.56	23.85	27.55	314.24	1106.10	391.31	
CH ₄	Winter	1.82	2.61	2.28	9.25	23.20	11.94	
(ppm,mg.h ⁻¹)	Summer	17.08	16.38	13.59	482.96	977.73	210.62	
CO ₂	Winter	2095.99	3064.00	2334.37	74.64	78.69	96.12	
(ppm,kg.h ⁻¹)	Summer	969.04	950.82	765.56	30.65	62.00	14.30	

Conclusions

The differences of monitored three broiler houses demonstrated that house design had considerable effects on pollutant gas concentrations.

It was found that there were significant seasonal variations between pollutant gas concentrations and these variations originated from indoor environmental conditions such as temperature, relative humidity and ventilation rates in monitored houses.

Pollutant gas emissions obtained in this study are lower than the emission rates obtained in similar studies in USA. However, our results were comparable with the concentrations and emissions calculated in European studies as house design, ventilation system and bird diet applied in Turkish broiler farms are very similar to those employed in European countries.

The concentrations and emissions for some pollutant gases were higher than optimum thresholds for birds and workers. Especially, NH₃ concentration in the monitored broiler houses was a main problem for indoor air quality.

This study is one of the first comprehensively study about determination of pollutant gas concentration and emissions in Turkey. The more similar studies are needed to confirm the results and to form an emission inventory.

Literature Cited

 \bigcirc

Arogo J., Westerman P. W., Heber A. J., Robarge W. P., Classen J. J., (2006). Ammonia emissions from animal feeding operations, in Animal Agriculture and the Environment(Eds.: J. M. Rice, D. F. Caldwell,F. J. Humenik) American Society of Agricultural and Biological Engineers, University of Virginia, Charlottesville, VA, p. 47.
Blanes-Vidal V., Topper P. A., Wheeler E. F., (2007). Validation of AmmoniaEmissions from Dairy Cow Manure Estimated with a Non-Steady-State, Recirculation Flux Chamber with Whole Building Emissions, *Trans. ASABE*, 50 (2), 633–640

Burns, R.T., Armstrong, K.A., Walker, F.R., Richards, C.J., Raman D.R., (2003). Ammonia emissions from a broiler production facility in the United States. *International Symposium on Gaseous and Odor Emissions from Animal Production Facilities*, 2-4 June, 2003, Horsens, Denmark.
Burns, R., Moore, P., Moody, L., (2008). Using liquid aluminium sulphate to reduce poultry housing ammonia emissions. *National conference on Mitigating Air Emissions from Animal Feeding Operations*, Iowa State University, May

19-21,2008, Iowa,USA.

EPA,(2005). Inventory of U.S. Greenhouse Gas Emissions and Sinks:1990–2003, EPA 430-R-05-003, US Environmental Protection Agency, Washington, DC .

Hinz T., Linke S., (1998). A Comprehensive Experimental Study of Aerial Pollutants in and Emissions from Livestock Buildings, Part 1:Methods, *J. Agric. Eng. Res.*, 70 (1), 111–118.

Li, H., Burns, R.T., Xin, H., Gates, R.S., Trabue, S., Overhults, D.G., Moody, L. Earnest, J. (2008). Hydrogen sulphide and non-methane hydrocarbon emissions from broiler houses in the south-eastern United States. *2008 ASABE Annual International Meeting*, June 29 – July 2, 2008, Rhode Island, USA.

Redwine, J.S., Lacey, R.E., Mukhtar, S., Carey, J.B., (2002). Concentration and emissions of ammonia and particulate matter in tunnel ventilated broiler houses under summer conditions in Texas. *Transactions of The ASAE* 45 (4): 1101-1109.

Acknowledgments


 \bigcirc

The authors would like to express appreciation for financally support of Scientific Research Project Unit of Uludag University (Project No. OUAP-2012/21) participating TROPENTAG 2013.

 \bigcirc

Contact

Dr.IIker KILIC <u>ikilic@uludag.edu.tr</u> Tel:+90 224 294 16 27 Fax:+90 224 442 87 75

 \bigcirc

TROPENTAG 2013, Agricultural development within the rural-urban continuum, Stuttgart-Hohenheim, September 17 - 19, 2013