Soil C stocks decrease after conversion from degraded forest to rubber

M. de Blécourt¹, R. Brumme ¹, M. Hänsel ², J. Xu ³, M.D. Corre ¹, E. Veldkamp ¹

¹Soil Science of Tropical and Subtropical Ecosystems, University of Göttingen, Germany; University of Bayreuth, Germany; ³Kunming Institute of Botany, The Chinese Academy of Sciences, China

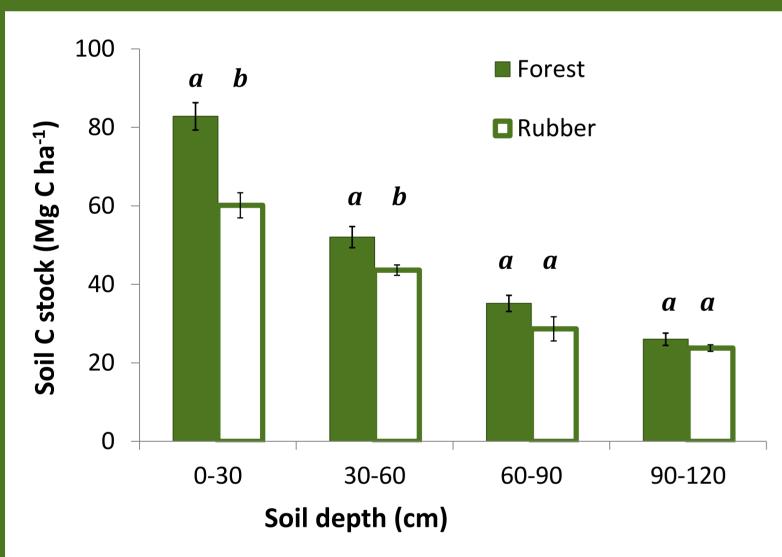
Introduction

Land use conversion from degraded forest patches into terraced rubber plantations is taking place in a large area of Xishuangbanna (southern Yunnan, China), northern Laos and northern Thailand (Li & Fox, 2012). These degraded forests consist of woodlots, village forests, and mature fallow fields. The impact of this land use conversion on soil C stocks has not been well-studied.

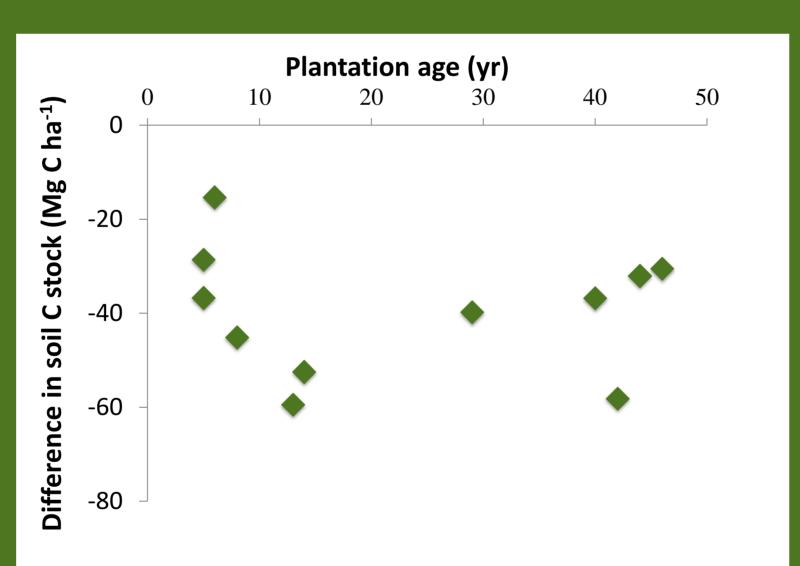
Aim: To quantify changes in soil C stocks after conversion from degraded secondary forest to terraced rubber plantations.

Research questions:

- 1. Are changes in soil C stock related to rubber plantation age?
- 2. Can changes in soil C stock be explained by changes in: (i) tree basal area (ii) litter layer quality or quantity?
- 3. What is the impact of terracing in rubber plantations on soil C stocks?


Conclusions & Discussion

- 1. Conversion from degraded forest to rubber plantation results in a significant decrease of soil C stock by 37.4 Mg C ha⁻¹ (19%) in the top 120 cm of the soil.
- 2. Changes in soil C stock can not be explained by changes in either leaf litter layer or tree basal area.
- 3. Terracing results in (i) redistribution of soil C stocks along the terrace, and (ii) slight increase of soil C stocks at the terrace in older plantations.


The observed decrease in soil C stock is hypothesized to be driven by:

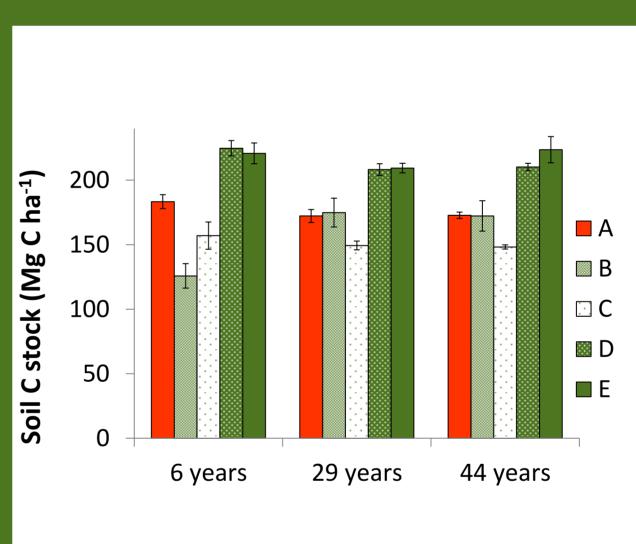
- 1. Higher erosion rates in rubber plantations compared to forest
- 2. Accelerated soil C decomposition rates, due to changes in microclimate.

Results - Land use change

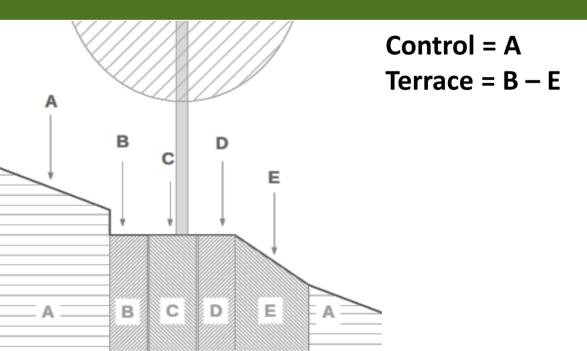
Fig. 1: Soil C stocks in forest (n=7) and rubber plots (n=11) in relation to soil depth (means \pm SE). Different letters show significant differences between rubber and forest within soil depth interval (LME at P < 0.05).

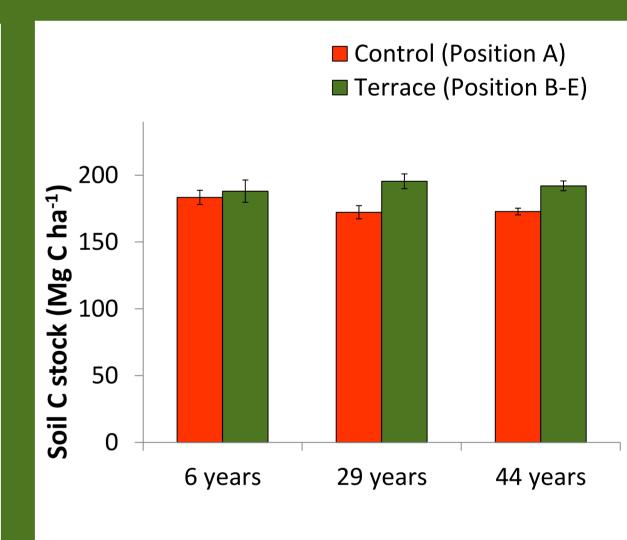
Fig. 2: Differences in soil C stock in 0-120 cm depth between paired rubber and forest plots in relation to rubber plantation age.

Table 1: Means \pm SE, forest (n=7) and rubber plots (n = 11).


	Forest	Rubber
Total soil C (Mg C ha ⁻¹)	196 (6.15)	155 (3.55)
Tree basal area (m² ha-1)	15 (1.67)	19 (3.75)
Litter CN ratio	45 (3.58)	46 (3.80)
Litter layer C (Mg C ha ⁻¹)	2.68 (0.44)	2.11(0.18)

Soil C stock to 120 cm depth


Rubber has a significantly lower soil C stock than forest: $-37.4 \text{ Mg C ha}^{-1}$ (SE = 4.9) (LME at P < 0.05)

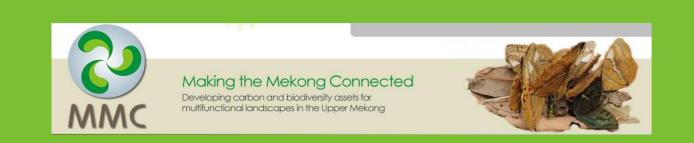

Litter layer C stock, litter CN ratio, and tree basal area: No significant differences between paired rubber and forest plots.

Results - Terracing

Fig. 3: Soil C stocks in 0-120 cm depth per terrace position (n=6) in plantations of different ages (means \pm SE).

Fig. 4: Soil C stocks in 0-120 cm depth at control (position A) (n = 6) and at the terrace (weighted average of position B-E) (n=6) in plantations of different ages (means \pm SE).

Approach


Land use change

- 11 pairs consisting of a plot in a rubber plantation and a plot in a forest.
- Paired rubber and forest plots have similar biophysical conditions.
- The selected rubber plantations were established on former secondary forest.
- Age of rubber plantations: 5 46 years.
- Assumption: Paired plots had comparable initial conditions at the time of land use conversion.

Terracing:

- 3 rubber plantations: 5, 29 and 44 years
- Plot design: 6 transects per plot. A transect consisted of 5 sampling points along a terrace.

