UNIVERSITÄT HOHENHEIM



## in the Tropics and Subtropics Effects of Management Practices on Carbon Allocation in the semi-arid Savannahs the Borana Zone, Ethiopia

Lena Rathjen<sup>a</sup> , Jan Pfister<sup>a</sup> , Folkard Asch<sup>a</sup>

«University of Hohenheim, Department of Plant Production and Agroecology in the Tropics and Subtropics, Stuttgart, Germany



# Introduction

Grassland systems covering a large proportion of the earth's terrestrial area are expected to have a high potential for carbon sequestration if appropriate management would be applied.

The Borana pastoral area in southern Ethiopia (elevation: ~ 1500 m asl) is characterized by semi-arid climate with highly variable, bimodal rainfall (MAP: 300 - 900 mm, MAT: 20 °C).

Traditionally, the Borana people were pastoralists, driving their herds between varying grazing grounds in the dry and rainy season. Through institutional changes, increasing population density and the spread of cropping area, these systems are nowadays in transition to semisedentary systems.

The establishment of grazing enclosures (Kallo and Obru) is one of the tools of the Borana people to cope with recurrent droughts and fodder scarcity by preserving fodder for weak animals and calves during the dry season.

### Objectives

Characterize the two existing grazing management types (open-grazed vs. enclosure) according to aboveground biomass accumulation, soil organic carbon stocks (SOC), species composition, soil cover and stocking density

Research Site near Madhecho, Borana Zone during the dry Season in August 2011

Material and Methods

TRO7

**Centre for Agriculture** 

| Experimental Design |                      |                      | Methods                                                                                            |                                                                     |                                               |
|---------------------|----------------------|----------------------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------|
| Vegetation<br>Type  | Management<br>Type   | Plots<br>(30 x 30 m) | Soil Sampling                                                                                      | Plant<br>Sampling                                                   | Statistical<br>Analysis                       |
| Grassland           | open- grazed<br>(G)  | 5                    | <ul> <li>Auger<br/>samples</li> <li>4 depths<br/>(0-100 cm)</li> <li>10<br/>repetitions</li> </ul> | Plant     Sampling in 3     diagonal 1 m <sup>2</sup> SAS 9.3       |                                               |
|                     | Enclosures<br>(EC-G) | 5                    |                                                                                                    | subplots                                                            | <ul> <li>T-test at<br/>p &lt; 0.05</li> </ul> |
| Tree Savannah       | open-grazed<br>(T)   | 5                    | <ul> <li>Bulk Density</li> <li>SOM</li> <li>SOC</li> </ul>                                         | <ul> <li>DM biomass</li> <li>C/N (%) total<br/>Analysis</li> </ul>  |                                               |
|                     | Enclosure<br>(EC-T)  | 5                    | <ul> <li>Carbonates</li> <li>pH</li> <li>texture</li> </ul>                                        | <ul> <li>Soli cover (%)</li> <li>Species<br/>composition</li> </ul> |                                               |





Research Site between Dubuluk in the North, Soda in the East and Mega in the South.

The Site selected is 10x10 km<sup>2</sup> in size. Top left: Cattle during rainy season in a Pennisetum spp. grassland with scattered acacia trees (open-grazed area)

city (TLU/ha) of the

### Results and Discussion

BMZ 🏶









Means followed by the same letter are not significantly different at P<0.05. Bars show the standard error over the repetitions. Colours in the first graph indicate the significances for Grass and Total Biomass. Some data was not normally distributed and had to be log-transformed. ECG= Enclosure in Grassland; ECT= Enclosure in Tree-Savannah; T= Open- grazed Tree-Savannah; G= Open-grazed Grassland

- Total biomass accumulation was significantly higher in tree than in grass savannahs; Grass biomass was dependent on grazing management
- Soil organic carbon stocks were significantly higher under open grazing than in enclosures
- Species composition differed significantly between enclosures and open- grazed areas. More perennials grew in enclosures. Species palatability and soil cover were higher too (data not shown)
- · Both grazing systems showed overgrazing, although enclosures could carry significantly more animals (TLU/ha) and were less overgrazed

### Conclusions

- In open-grazed systems more organic carbon is stored than in enclosures
- More seasonal biomass is accumulated in enclosures
- Questions arise concerning sustainability, overgrazing (see graph 4), land degradation, reduced soil cover (data not shown) and species alteration (see graph 3)





This study was conducted within the framework of the project "Livelihood diversifying potential of livestock based carbon sequestration options in pastol area to a state of the section of University of Hohenheim (Germany). This work was funded by the BMZ and the Dr. Herman Eiselen Foundation-fiat panis, Ulm

