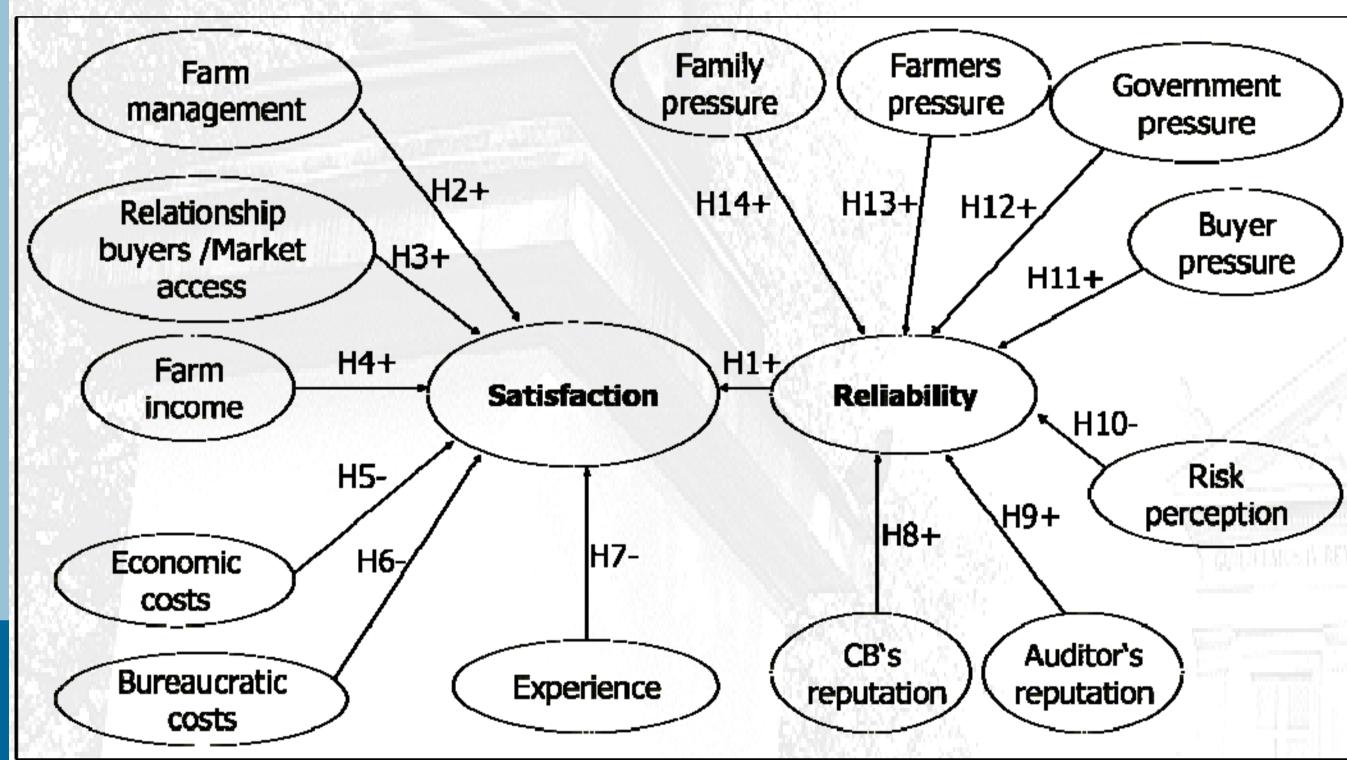
Tropentag: Development on the Margin. October 5 - 7, 2011, University of Bonn, Bonn, Germany

# Factors determining farmer satisfaction with the organic certification process in Chile

Carlos Padilla Bravo<sup>a</sup>, Achim Spiller<sup>a</sup> and Pablo Villalobos<sup>b</sup>

<sup>a</sup> Department of Agricultural Economics and Rural Development, University of Göttingen, Germany


## 1. Problem statement

⇒Perceived negative effects associated to the use of quality and safety control systems have been described in the literature (Getz and Shreck, 2006; Gawron and Theuvsen, 2006; Dorr and Grote, 2009; Hammoudi et al., 2009; Karipidis et al., 2009).

## 2. Objective

⇒To critically assess farmers' satisfaction with the certification system process and the factors driving it.

# 3. Research hypotheses and model



CB = certification body.

# 4. Methodology

⇒Data from 60 Chilean organic farmers.

**Table 1.** Sample characteristics<sup>a</sup>

|         |               | Experience   |              | Number of |  |
|---------|---------------|--------------|--------------|-----------|--|
| Age     | Gender        | Org. farming | Size of farm | workers   |  |
| (years) | (female/male) | (years)      | (ha)         | (#)       |  |
| 49.1    | 8/52          | 7.0          | 21.7         | 9.5       |  |
| 12.3 b  | 13.3%/86.7%   | 5.2          | 37.7         | 16.6      |  |

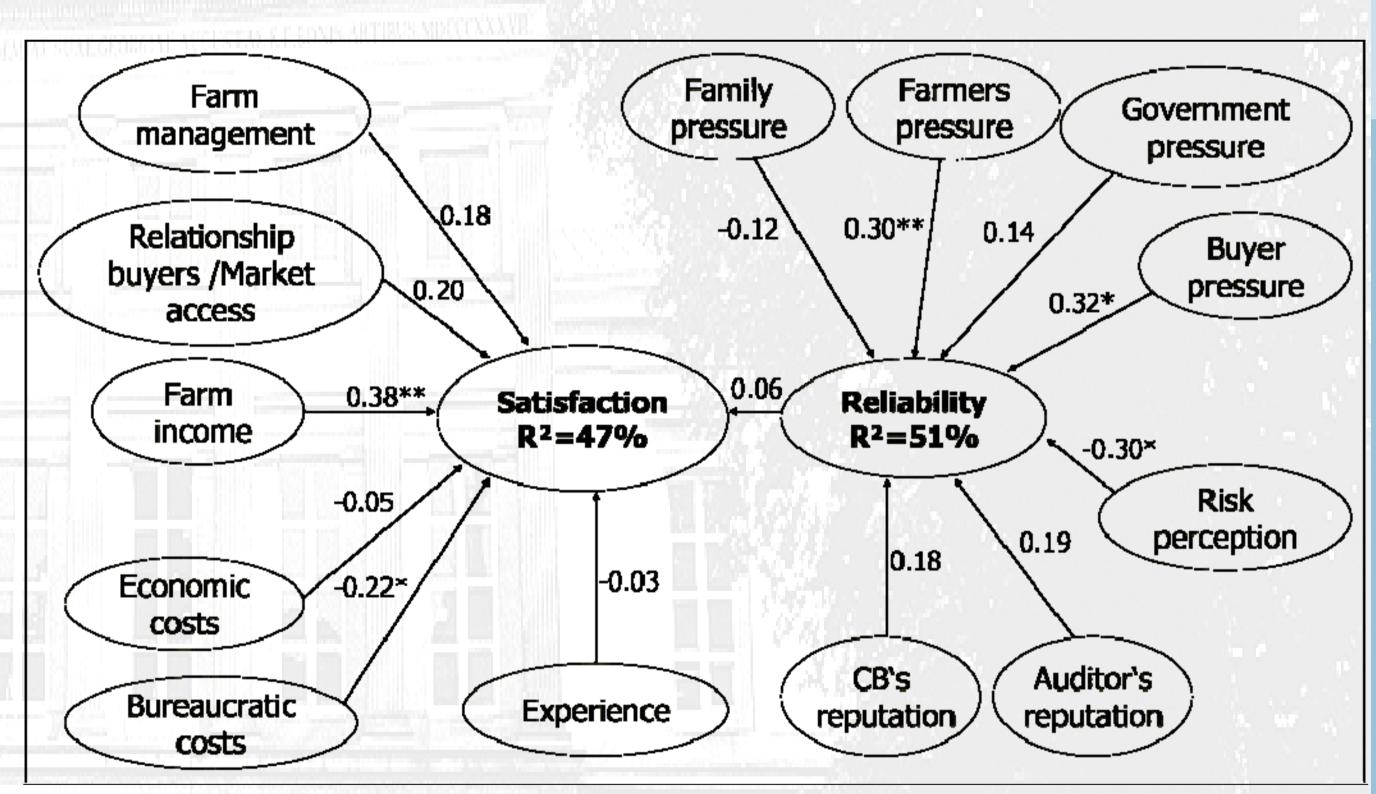
<sup>87%</sup> of the surveyed farms are affiliated to the certification body BCS ÖKO-GARANTIE GMBH. Standard deviation in italic.

- ⇒Questionnaire with multiple scale items (Likert scale, -3 to +3).
- ⇒Analytical framework: Structural equation modelling.
- ⇒Statistical approach: Partial least squares (PLS).
- ⇒Software: SmartPLS version 2.0 M3.

#### 5. Results

⇒The majority of respondents (90%) show some degree of satisfaction with the organic certification procedure.

## 5.1. Assessment of the measurement model


- ⇒Indicator loadings (data not displayed) are consistent with recommended threshold (see Henseler et al., 2009; Hair et al., 2011).
- ⇒Reliability and convergent validity scores are also acceptable (see Table 2).
- ⇒Discriminant validity is also supported (data not displayed).

**Table 2.** Reliability and convergent validity scores

|                                      |          | <b>CRA</b> <sup>a</sup> | <b>CR</b> <sup>b</sup> | <b>AVE</b> <sup>c</sup> |
|--------------------------------------|----------|-------------------------|------------------------|-------------------------|
| Latent constructs                    | N° items | (>= 0.7)                | (>=0.7)                | (>=0.5)                 |
| Auditor's reputation                 | 3        | 0.53                    | 0.76                   | 0.52                    |
| Bureaucratic costs                   | 3        | 0.58                    | 0.77                   | 0.53                    |
| Buyers pressure                      | 2        | 0.63                    | 0.84                   | 0.73                    |
| Relationship buyers/Market access    | 4        | 0.80                    | 0.86                   | 0.61                    |
| CB's reputation <sup>d</sup>         | 2        | 0.40                    | 0.75                   | 0.61                    |
| Economic costs                       | 2        | 0.62                    | 0.82                   | 0.70                    |
| Experience in organic farming        | (1.1     | 1.00                    | 1.00                   | 1.00                    |
| Family pressure                      | 1        | 1.00                    | 1.00                   | 1.00                    |
| Farm income                          | 2        | 0.56                    | 0.81                   | 0.69                    |
| Farm management                      | 3        | 0.57                    | 0.76                   | 0.53                    |
| Farmers pressure                     | 3        | 0.61                    | 0.79                   | 0.56                    |
| Government pressure                  | 1        | 1.00                    | 1.00                   | 1.00                    |
| Reliability of organic certification | 3        | 0.62                    | 0.79                   | 0.57                    |
| Risk perception                      | 3        | 0.59                    | 0.77                   | 0.52                    |
| Satisfaction                         | 1        | 1.00                    | 1.00                   | 1.00                    |

- <sup>a</sup> Cronbach's alpha.
- <sup>b</sup> Composite reliability.
- <sup>c</sup> Average variance extracted. <sup>d</sup> Certification body's reputation.

## 5.2. Assessment of the structural model



Parameter is significant at  $\rho < 0.05$ ; \*\*parameter is significant at  $\rho < 0.01$ .

#### 6. Conclusions

- ⇒Farm income major determinant of farmers' satisfaction.
- ⇒Bureaucracy to get certification approval should be reduced.
- ⇒Reliability would not play a significant role in satisfaction.
- ⇒Reputation issues do not affect the perceived reliability.
- ⇒Opportunistic behaviour of other farmers decreases the reliability.
- ⇒Role of the State as monitor is poor.
- ⇒Buyer pressure and farmers' control suggest ability of selfregulation within the industry.

#### 7. Limitation and further research

- ⇒The affiliation of the majority of surveyed farms to one CB may have biased the findings.
- ⇒A more heterogeneous sample considering different CBs operating in Chile is needed in future studies.

## References

Dorr, A.C., and U. Grote. 2009. The role of certification in the Brazilian fruit sector. R. Econ. Contemp. 13:539-571.

Gawron, J., and L. Theuvsen. 2006. The international food standard: bureaucratic burden or helpful management instrument in global markets? Empirical results from the German food industry. Available at: http://purl.umn.edu/10062 (Accessed May 2011).

Getz, C., and A. Shreck. 2006. What organic and fair trade labels do not tell us: towards a place-based understanding of certification. Int. J. Consum. Stud. 30:490-501.

Hair, J.F., C.M. Ringle, and M. Sarstedt. 2011. PLS-SEM: indeed a silver bullet. J. Marketing Theory Pract. 19:139-151.

Hammoudi, A., Hoffman, R. and Surry, Y. 2009. Food safety standards and agri-food supply chains: an introductory overview. Eur. Rev. Agric. Econ. 36:469-478. Henseler, J., C.M. Ringle, and R.R. Sinkovics. 2009. The use of partial least squares path modeling in international marketing. Adv. Int. Market. 20: 277–319.

Contact: Carlos Padilla Bravo.

Address: Department of Agricultural Economics and Rural Development, University of Göttingen. Platz der Göttinger Sieben 5, 37073, Göttingen, Germany.

E-Mail: cpadill1@uni-goettingen.de. **Phone:** +49 (551) 394825.

Fax: +49 (551) 3912122.

<sup>&</sup>lt;sup>b</sup> Department of Agricultural Economics, University of Talca, Chile