Agriculture and the Rural-Urban Continuum – GIS-based Analysis of Urban and Periurban Agriculture in Moshi, Tanzania

JOHANNES SCHLESINGER¹; AXEL W. DRESCHER¹

¹DEPARTMENT OF PHYSICAL GEOGRAPHY, UNIVERSITY OF FREIBURG, GERMANY EMAIL: JOHANNES.Schlesinger@Geographie.Uni-Freiburg.de

Why this research?

Urban and periurban agriculture (UPA) plays a crucial role in providing nutrition for the **rapidly growing population of cities** in developing countries in general and in African cities in particular. Even though the research on this topic has significantly grown within the last years, there is a notable bias on capital cities and the main economic centres and there is a **lack of research on medium-sized cities** in Africa. Therefore, the understanding of the character of the rural-urban continuum is limited. This leads to the formulation of inappropriate land use policies. This case study of Moshi, Tanzania is based on a **transect approach** and aims at developing a tool to comprehensively **analyse spatial patterns along the rural-urban continuum**.

Research Questions

- How can land use data and household survey data be successfully integrated in a Geographic Information System (GIS)?
- How should a replicable toolset be shaped that helps analysing and visualising the character of the rural-urban continuum?
- What kind of spatial patterns in land use and the households' agricultural activities can be identified along the rural-urban continuum?

Methods – working along the transect

The transect approach

The data collection and analysis process is based on a transect approach.

The four identified transects:

- originate at the city centre (in this case the central market)
- are oriented towards north, south, east and west respectively
- are up to 8 km long and 100 m wide each
- are divided into up to 84 sectors each that form the geographic basis for data analysis (see ⓐ)

To analyse spatial patterns of UPA along the transects a two-fold research approach is being applied:

- Mapping of agricultural land use along the four transects (see (b))
 - In situ mapping of all agricultural areas within the transect rectangles (recent satellite images and cadastral maps as base maps)
 - Digitisation of analogue mapping data
 - GIS-based processing (e.g. assign attributes, calculate areas) and analysis of digital data of agricultural land use
- Household survey within the four transects
 - GIS-based random sampling of survey households (n = 404)
 - Elaboration and pre-testing of standardised questionnaire covering different aspects of agricultural activities (e.g. yearly production, inputs used, marketing, income generation)
 - Geocoding of interview data (see ©) and analysis of spatial patterns

Additionally, data is being collected through:

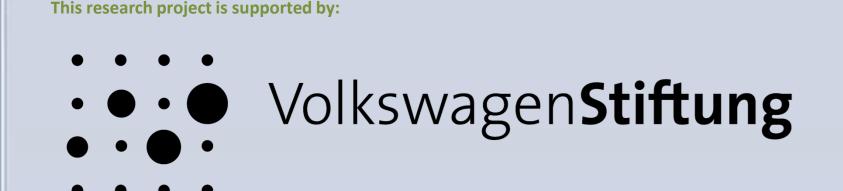
- Qualitative interviews with experts on the national, municipal and ward level
- Acquisition of aerial photos, cadastral maps and agricultural statistics

The above the control of the control

Results – the comprehensive Agricultural Activity Index (AAI)

Area	Building density	Construction activity	Agricultural land use	Agricultural activity on homestead plot		Agricultural Activity Index (AAI)	Description
1	++	-			-	-	City centre, very high building and population density, jobs mainly in the tertiary sector, hardly any agricultural activity
2			+	n/a	n/a	l +	Part of the Moshi airfield, currently not used as runway, intra-urban open space close to residential areas, utilised urban agricultural area
3	0	0	-	+	0	1 ()	Planned residential area with good infrastructure, mix of government employees and businessmen, medium/high-income, mainly lawn
4	-	++	+	++	++	l +	Mix of long-standing farm plots and new residents, heterogeneous land use and social structure, very dynamic
5			++	n/a	n/a	l ++	Vast area of smallholder fields, subsistence- as well as market-oriented cultivation of staple foods (maize, beans)

In this research, the transect approach has been developed and improved as a tool that can help to collect, process, analyse and visualise data. Some results are:


- Convenient tool for data collection (land use data as well as social data)
- Successful integration of land use data and geocoded interview data
- Elaboration of a **number of Indexes** for all relevant scale units
- Development of the **Agricultural Activity Index (AAI)** based on, inter alia, land use data and involvement of households in agricultural activities
- Coherent analysis and visualisation of spatial patterns along the rural-urban continuum (see ①-⑤)

Outlook


- Replication of methods in other medium-sized cities
- Scaling-up of methods (e.g. bigger cities, more transects)
- Inclusion of findings in appropriate land use policies

Selected References:

Appeaning Addo, Kwasi (2010): Urban and Peri-Urban Agriculture in Developing Countries Studied using Remote Sensing and In Situ Methods. In: Remote Sensing 2010/2, 497-513. Basel Lerner, Amy; Eakin, Hallie (2010): An obsolete dichotomy? Rethinking the rural-urban interface in terms of food security and production in the global south. In: The Geographical Journal 2010. (published online) Foeken, Dick et al. (2004): Urban agriculture in Tanzania. Issues of sustainability. African Studies Centre Research Report 75/2004. Enschede

