
2 Objectives
• Estimation of above ground biomass (AGB) values for different forest 

types within Central Kalimantan (Indonesia)
• create a basic methodology for  future REDD projects 
• AGB estimation by LiDAR (Light Detecting and Ranging) data 

analysis, making use of collected field inventory data
• Two approaches: 

(1) linking single tree parameters via allometric equations
(2) developing a multiple regression model at plot level using laser 

point cloud characteristics 

4 LiDAR data
• 3D information of forest structure
• High sampling intensity, direct measurements of 

heights, precise geolocation, automated 
processing

=> useful for directly assessing vegetation 
characteristics and deriving forest biomass

• Scanning of 8,090 ha by a Riegl LMS-Q-560 
Airborne Laser Scanner, providing small-footprint 
full-waveform data 

• Groundpoint-filtering (Kraus & Pfeifer, 1998)
• interpolation to a digital terrain model (DTM)
• Subtracting the DTM from the canopy surface 

model gives the canopy height model (CHM)

Figure 2 3D view of the surface models: DTM (A, C), and CHM (B, D). The LDF subset shows primary 
and secondary forest and an abandoned rice field. The PSF forest subset shows a transition zone 

from burned to forested (logged) area. 

7 Conclusion
• Plot level approach more adequate and effective than the single tree approach
• Regression models able to estimate spatial variability within a degradation class
=> The models have high potential to be implemented in REDD projects which will contribute to the protection of forest ecosystems 

throughout Kalimantan, to ensure a sustainable way of living for the local people and improve their living conditions by the means 
of fair payments from the industrialized countries.
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1 Context 
• Insular Southeast Asia: highest deforestation rate worldwide (1.3% per 

year)
• Mostly anthropogenig reasons: shifting cultivation, industrial timber 

estates, illegal logging, large-scale plantations, peatland drainage for 
governmental resettlement activities

• Vast areas of the Indonesian peat swamp forest destroyed by forest fires
=> enormous amounts of carbon dioxide release
→ Reducing emissions of deforestation and forest degradation (REDD)-

mechanism: potential to be a tool for saving tropical ecosystems

3 Field inventory
• barely no inventory data for Kalimantan’s forests
• requirement of a high number of field plots
• faster angle count sampling method (fixed-area 

plots as a control)
• 328 angle count plots and 64 nested plots 

recorded in lowland dipterocarp forest (LDF), peat 
swamp forest (PSF) and heath forest

• Degradation states: unlogged, logged, burned
• Calculation of AGB: widely accepted models by 

IPCC (2006), Brown (1997), and Chave et al. 
(2005) (including and excluding tree height) 

• Chave-height-excluding model most accurate

Figure 1 Average AGB values per forest-/ land use type derived from different formulas 
(including tree height: AGB Chave-DBH,H; excluding tree height: AGB Chave-DBH). 

(DBH = diameter at breast height; H = tree height)

5 Single tree approach
• 415 out of 1034 field-positioned trees identified in the 

CHM (Fig. 3)
• Field and LiDAR derived height showed a significant 

correlation of 0.87 (0.1 level) 
• Diameter at breast height (DBH) measured in the 

field and LiDAR derived crown diameter and height 
linked by allometric equations:

• lowland dipterocarp forest: R² = 0.63
• peat swamp forest: R² = 0.77

• TreeVaW, a tree detection software, used to identify 
individual tree parameters of whole LiDAR tracks

• These AGB values were generally underestimated 
due to the non-detectable understorey biomass

Figure 3 Crown identification by means of segmentation of CHM (A, C) and aerial photo (B, D) in LDF. 
Identified crowns are selected (bright blue). 

5 Plot level approach
1) Extraction of 3D laser point clouds of 1-ha-plots (angle 

count) and 1256m²-plots (nested plots) and 
determination of height statistics of point clouds

• Mean, maximum
• Std. deviation, range, variance, std. error of mean 
• 5th to 95th percentile
• Canopy cover

2) Multiple regression analysis (stepwise selection)

=> AGB-predicting models for each forest type

• 1256m²-plots: model validation weaker  than for 1-ha-plots for both 
types and for LDF

Figure 4 Example distribution of LiDAR point heights within two different 1 ha plots. 3D-view of the point clouds with the 
corresponding histograms. 
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6 Application

Figure 5 AGB calculation for a whole LiDAR track in PSF using the best regression model (grid cell size: 1 ha) A LiDAR 
track outline on a RapidEye image B AGB results of 1-ha-cells C greater extents D height profiles E histogram of AGB 
values


