

INTEGRATED PEST MANAGEMENT IN ORGANIC VEGETABLE SOYBEAN PRODUCTION

R. Srinivasan*, Fu-Cheng Su, Chun-Chu Huang, Mei-Ying Lin, Yun-Che Hsu

INTRODUCTION

- Vegetable soybean is an important crop in East and Southeast Asia
- Source of dietary protein; also improves soil fertility
- Damaged by a plethora of insect pests and diseases
- Crop loss could be as high as 100%
- Chemical pesticides mainly used to control insect pests; not sustainable

MATERIALS and METHODS

- Insect pests on vegetable soybean monitored under organic production systems in a field trial during Spring 2006
- An IPM strategy based on sex pheromones, yellow sticky paper traps, biopesticides with neem, Bacillus *thuringiensis* (Bt), and nucleopolyhedrovirus (NPV) was validated. The IPM strategy was compared with an
- An IPM strategy was developed for organic production

untreated control during Autumn 2006 and Spring & Autumn 2008, with an untreated control as well as farmers' practice during Spring & Autumn 2007

RESULTS

- Spodoptera litura
- Spodoptera exigua
- Helicoverpa armigera
- **Omiodes indicata**
- Porthesia taiwana

Bemisia tabaci

Edwardsiana flavescens Megalurothrips usitatus

Etiella zinckenella

Effects of IPM strategy on pests and vegetable soybean yield

Table 1. Effects of various management practices on the incidence of secondary phytophagous insect pests on vegetable soybean

	No. (
Pest species	Organic IPM Farmers' practice		Check	F value	P value			
Lepidoptera								
Cabbage looper (<i>Trichoplusia ni</i>)	0.06 a	0.00 b	0.07 a	11.94	0.0003			
Soybean webworm (<i>Omiodes indicata</i>)	0.03	0.01	0.02	2.49	0.11			
Common armyworm (<i>Spodoptera litura</i>)	0.02	0.01	0.03	1.11	0.35			
Beet armyworm (<i>Spodoptera exigua</i>)	0.01	0.01	0.004	0.69	0.51			
Tomato fruitworm (<i>Helicoverpa armigera</i>)	0.01	0.02	0.02	0.63	0.54			
Taiwan tussock moth (<i>Porthesia taiwana</i>)	0.04 b	0.00 b	0.11 a	11.14	0.0005			
Hemiptera								
Green stink bug (<i>Nezara viridula</i>)	0.02	0.02	0.01	0.40	0.67			
Smaller green leafhopper (<i>Edwardsiana flavescens</i>)	0.49 a	0.00 b	0.61 a	40.40	<0.0001			

Table 2. Effects of various management practices on the pod damage of vegetable soybean due to pod borers

Treatments	Pod damage (%)						
	20	007	2008				
	Spring	Autumn	Spring	Autumn			
Check	10.70 a	10.10 a	17.90 a	2.45 a			
Organic IPM	4.00 b	11.20 a	6.93 b	1.32 b			
Farmers' practice	1.80 c	0.92 b					

Figures followed by same letter(s) in a row are not significantly different at p=0.05

Table 3. Effects of various management practices on the total and graded pod yield in vegetable soybean

Treatment	Pod yield (t/ha)									
	Autumn 2006		Spring 2007		Autumn 2007		Spring 2008		Autumn 2008	
	Tot	Grad	Tot	Grad	Tot	Grad	Tot	Grad	Tot	Grad
Check	6.00 b	3.20 b	9.00 c	4.20 c	5.08 b	1.66 b	12.06 a	5.00	6.20 a	2.06 b
Organic IPM	9.90 a	7.10 a	9.90 b	4.90 b	6.31 a	3.80 a	11.49 b	5.69	5.69 b	2.83 a
Farmers' practice			13 80 a	890a	4 53 b	2.00 b				

Figures followed by same letter(s) in a row are not significantly different at p=0.05

* Entomology Unit, AVRDC – The World Vegetable Center 60 Yin-Min Liao, Shanhua, Tainan 74151 TAIWAN

Email: srini.ramasamy@worldveg.org

09/2009

ranners practice 13.00 a 0.30 a 4.33 b 2.00 b

Figures followed by same letter(s) in a row are not significantly different at p=0.05

CONCLUSION

- Pod borers (*E. zinckenella* and *M. vitrata*) emerged as major pests. Secondary phytophagous insects did not cause significant damage
- Damage due to pod borers was significantly reduced by the **IPM** strategy
- Graded pod yield is always higher in IPM plots than in control plots