

Ins

Faculty of Forest, Geo and Hydro Sciences Department of Forestry astitute of International Forestry and Forest Products

UNIKASSEL VERSIT'A'T

Faculty of Organic Agricultural Sciences Dept. of Development Economics and Agricultural Policy

WOODY PLANTS IN SMALLHOLDERS' FARM SYSTEMS IN THE CENTRAL HIGHLANDS OF ETHIOPIA: A DECISION AND BEHAVIOUR MODELLING

Michael KRAUSE⁽¹⁾ and Holm UIBRIG⁽²⁾

Problem statement and research rationale

Agricultural land expansion until mid 1990s, extension by MoA to raise land productivity after mid 1990s

Continuous cutting in natural forests for fuelwood and timber-based produce, negligible tree-based extension

→ Deforestation of natural forests >1500 m.a.s.l. (~3% natural forest cover (JICA 1999))

R&E which does not sufficiently take smallholders' decision-making processes into

account

 \rightarrow Institutional knowledge gaps about factors actually influencing tree growing behaviour from farmer's point of view

→ Little advancement in deliberate introduction of woody species in farm households

Results I: Decision model "Deliberate growing of trees in homegarden"

Objectives

• To analyse farmers' decisions in making use of tree and shrub species under prevailing perceived constraints

• To identify and analyse influencing factors that determine deliberate tree and shrub growing behaviour

Map: Administrative location of study area/sites Photo (Krause): Study area in Dendi district

Study sites and sampling

taaj enee ana eanpinig								
Village	Total number of hhs			Sample size [%]				
	Male	Female	Total	Male	Female	Total		
Lanqisaa (PA1)	414	74	488	13.0	14.9	16.2		
Galessa Koftu (PA2)	329	72	401	16.7	13.9	13.3		
Total/ Mean value	743	146	889	14.7	14.4	14.6		

Systematic random sampling of 130 hhs (65 per village)
 Ex-post stratification (grower/non-grower)

Results II: Discriminant Analysis

Variables	Homegarden					
	PA1	PA2				
Group centroid, canonical discriminant eigenvalues and Wilk's λ						
Grower/ adopter	0.568	1.373				
Non-grower/ non-adopter	-1.278	-1.704				
Eigenvalue	0.715	2.414				
Canonical correlation	0.646	0.841				
Wilk's Lambda	0.583	0.293				
Level of significance	0.001	0.001				
Standardized canonical discriminant coefficients						
Access to extension	0.487					
Access to credits	0.508					
Use of seedlings from farm nursery		0.446				
Use of wildlings from allocated land	0.730	0.750				
Use of wildlings from natural forest	0.384					
Use of seedlings from market	0.481	0.856				
Cash generated from SEU*capita*a		0.464				
Discrimination power (% of correctly classified hhs)						
Grower/ adopter	70	94.4				
Non-grower/ non-adopter	91.1	86.2				
Total	84.6	90.8				

In collaboration with and supported by

Ph.+P**S P74CS PCPC h.3h+-P++ Ethiopian Institute of Agricultural Research

Authors' contact: Dresden University of Technolgy, Institute of International Forestry and Forest Products, 01737 Tharandt/ Germany; Phone: ++49-(0)35203-3831823; Fax: -3831820; E-mail:

(1) <u>krause@uni-kassel.de</u>, (2) druibrig@forst.tu-dresden.de

Conclusions

Farmers' objective to grow woody plants in the homegarden determined by (1) means to contribute to home consumption; (2) potentiality to warrant immediate cash generation and (3) appropriateness as assets for saving purposes
 Subjectively perceived utility as driver for tree and shrub growing decisions: primarily fuelwood, timber-based produce, and cash

generation; fodder negligible in homegardens •Chief decision determinants for homegarden tree and shrub growing: perceived shortage of land resources and seedlings, the latter connected to the range of sources used

Markets accessible: establishment of farm nurseries (purchase of seedlings) → use of wildlings outweighed → partly overcomes
missing agroforestry-related extension depending on the household's cash capital endowment