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Abstract

We studied the impact of plant leaf residue decaitipm and nutrient release of nitrogen and
phosphorus of two weed specidsnperata cylindrica andChromolaena odorata - and one

native forest speciesPhyllanthus discoideus - on soil enzyme activities in a pot experiment in
the humid tropics of central Cameroon. We testedrtipact of plant leaf residue types on
decomposition rate, nutrient release and enzynieitéas in soil. We measured mass loss,
nutrient release of nitrogen (N) and phosphorusgr@@) decomposing residues, and soil enzymes
of the carbon cycle (R-glucosidase), N cycle (as¢@ and P cycle (acid and alkaline
phosphatase) over 120 days.

Mass loss from both chromolaena and phyllanthudues started immediately and was rapid,
whereas mass loss from decomposing imperata leeagsnly 24% after 90 days. Nitrogen and
P release was greater from decomposing chromok@hahyllanthus leaves than from imperata
residues. After 120 days, chromolaena and phyliengtant leaf residues had released nearly
three times as much of its initial pools of N anth&n had imperata plant leaf residue.
Beta-glucosidase activity was strongly affecteglant leaf residue types and mass loss.
Knowledge on resource-use efficiency of invading@dgemight help understand the processes
affecting nutrient availability in soils throughetin return of plant leaf residues differing in
quality.
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Introduction

In central Cameroon weeds are becoming more and afa problem due to soil degradation
caused by intensive agriculture (Degrande, 200tgidwe, submitted)Chromolaena odorata

(L.) King & Robinson andmperata cylindrica (L.) Raeusch, are major invasive weeds in both
tree and food crop systems in Cameroon (Norgroat ,€2000). Both species are perceived by
farmers as troublesome weeds, increasing laborreegents for weeding and decreasing crop
yield and crop quality (Chikoye et al., 2000). Hoeplant biomass and other organic resources
play a dominant role in soil fertility managemehsmallholder farming systems in the tropics
(Palm et al., 2001). The turnover and mineralizatbresidues largely depends on soil biological
processes, and its decomposition by soil microasgas ensures the recycling of nutrients that
can be then reused by plants and microbes. Theityapbthe plant biomass is comprised of



insoluble compounds that require enzymatic actitotgdecompose (e.g. Carreiro et al., 2000;
Sinsabaugh and Moorhead, 1994; Sinsabaugh e0aR)2

We studied the impact of plant leaf residue decasitipm and nutrient release of two weed
species tmperata cylindrica andChromolaena odorata - and one native forest species -
Phyllanthus discoideus - on soil enzyme activities in a pot experimentha humid tropics of

central Cameroon. We tested the impact of plartréssadue types on decomposition rate,

nutrient release and enzyme activities in soil. Méasured mass loss, nutrient release of N and P
from decomposing residues, and soil enzymes ofthgcle ([3-glucosidase), N cycle (protease)
and P cycle (acid and alkaline phosphatase) ov@dags. The results will show if differences in
plant leaf residues influence the decompositioe, natitrient release and soil enzyme activity.

Materials and methods

The study site was located at IITA (Internatioimstitute of Tropical Agriculture) in near
Yaoundé, Cameroon at 3°51° N and 11°31° E. Meanartemperature is between 24 andQ7
Rainfall distribution is bimodal, averaging 1600 rper year with long rains from March to July
and a short rainy season from September to NoverSiods of the study area were ferric
Acrisols and Ferralsols (FAO, 2001).

We conducted a pot experiment outdoors under ambaaritions in which nativ@hyllanthus
discoideus (phy) and weedy plant leaf residuedmperata cylindrica (imp) andChromolaena
odorata (chr) were crosswise incubated on soils origirafiom under different vegetations. The
soils were similar in chemical and physical projesrhowever they had been under either
Imperata, Chromolaena or natural forest vegetation for several years ¢Rore, submitted).

Soils were taken with a shovel from the 0 to 5 @ptH, sieved, filled into bottom-punched
plastic pots and the three plant leaf residue tyyare incubated on the surface of the pots. Each
combination was replicated 4 times. Non-amendedd served as reference (nil). The
amendment of the plant leaf residue per pot coomdpd to 15 t hd dry mass, and match
realistic production rates for natural or manageddesns (Ibewiro et al., 2000; Tian et al., 2000).
Soils and plant residues samples were taken &, GlQ 60, 90 and 120 days after incubation
(DAI). Soil samples for enzyme analyses were kighd imoist, sieved to pass a 4 mm sieve and
stored in sealed plastic bags at 4°C until analyBe&-glucosidase activity in the soil was
measured according to Eivazi and Tabatabai (1388ults of enzyme activity are expressed as
micrograms p-nitrophenol (pNP) released per g wisail per hour. The plant leaf residues were
oven dried at 60°C to constant mass and groundbtonén. The ash-free dry weight (DW) was
recorded. Total N was determined with an ammoniensisive electrode (Powers et al., 1981),
and total P content was determined by the malagh@&en colorimetry procedure (Motomizu et
al., 1983).

Statistical analysis was performed with SYSTAT Paog version 10.2 (SYSTAT, 2002). Saoll
chemical and biochemical characteristics werestieaily analyzed by ANOVA using soil, plant
leaf residue and time as main factors. Treatmdfgrdnces were determined by using Tukey’s
Honestly Significant Difference test (HSD) at tH&® confidence level.

Pearson’s correlation coefficient r was used t@udes the degree of linear association between
soil enzyme activity, DM loss and release of N Brfdlom decomposing plant leaf residues.

Results

Mass loss from both chromolaena and phyllanthust péeaf residues started immediately after
the beginning of the incubation study (Figure 1ffeA3 weeks (20 DAI), 40% of both plant leaf
residues was decomposed. Thereatfter, loss of deingpphyllanthus leaves was faster than of
chromolaena plant leaf residue and after 60 d&i, df the initial chromolaena leaves remained
but only 20% of the initial phyllanthus leaves.tAe end of the decomposition study after 120
days, 4% of the initial phyllanthus biomass remdindereas, on average, 24% of initial
chromolaena leaf plant leaf residue remained undposed. By contrast, imperata decomposed



slowly with only 24% of its dry matter lost in 9@yk. After 90 days, however, mass loss
increased greatly, losing more than 60% of itswdeyght within 30 days (Figure 1). At the end of
our decomposition experiment (120 days) about 208epinitial biomass remained, similarly to
chromolaena.
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Figure 1. Decomposition of leaveslafperata cylindrica (top), Chromolaena odorata (middle) and
Phyllanthus discoideus (bottom), on soils sampled under imperata (Impomolaena (Chr) and forest
(For) vegetation over 120 days at Yaoundé, Cameiro@004.



Nitrogen release (g N pOtfrom decomposing plant leaf residues was higtiesng the first 60
days. It was, on average, 3 g per pot for bothlphtius and chromolaena leaves, and 0.54 g for
imperata leaves. At the end of our decompositiggedrment at 120 days, twice as much (80%)
of the initial N content remained in the imperalanp leaf residue compared to both chromolaena
phyllanthus leaves which retained about 40% ofrifiml N content in their plant leaf residue.

The release of P from imperata leaf residues aneduotabout 70 mg per pot (60%), half the
amount released from phyllanthus leaves, 130 n@p#%s. After 120 days, total amount of P
released from decomposing chromolaena and phyllarigaves (150 mg) was twice the amount
mobilized from imperata leaves (70 mg per pot).

During the first 40 days of leaf decomposition, #utivity of R-glucosidase remained rather
stable at about 40 to 5@ pNP g h™, and no significant differences between the pleait

residues were found (Figure 2). After 60 days atiivity of R-glucosidase had increased about 4
to 5 fold in soils amended with chromolaena andlphthus leaves but only 2 fold in soils under
imperata plant leaf residues. At the end of ouodgmsition experiment at 120 days, the activity
of B-glucosidase was significantly higher undeoaholaena (323g pNP ¢ h*) than under
phyllanthus (141ig pNP g" h') and imperata (48g pNP g' h?).
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Figure 2. Temporal variability of 3 - glucosidasgaty in topsoil (0 - 3 cm) amended with
imperata (imp), chromolaena (chr) and phyllanthprs/) leaves during 120 days at IlITA,
Yaoundé, Cameroon in 2004. Data are averaged ousr s

Discussion

Whereas mass loss from both chromolaena and pkiyllamesidues started immediately and was
rapid, mass loss from decomposing imperata leaassonly 24% during the first 90 days of
decomposition. Our results confirm studies wittetitbags conducted under similar conditions
(Ibewiro et al., 2000; Norgrove et al., 2000; Tetral., 2000). Throughout the decomposition
study, mass loss (Figure 1) from decomposing phifilas and chromolaena leaves always
exceeded N and P loss. Mass loss from decompossidues is regulated by plant leaf residue
guality (e.g. Allison and Vitousek, 2004a; Palm &ahchez, 1991). Initial plant leaf residue C:N
ratios of 25 (or N contents of 2.5%) have been satggl as the threshold controlling
immobilization (C:N > 25) versus mineralization RC< 25) (e.g. Hendrickson, 1985; Wagger et
al., 1998). Although the initial C:N ratio was &ty imperata residues (N content was 1%) and 10



for both chromolaena and phyllanthus leaves (> 4%&ldid not find N immobilization in
decomposing plant leaf residues throughout our meosition study . Other studies reported that
structural plant compounds such as lignin (L) aalyghenols (PP) regulated mass loss and
nutrient release from decomposing plant leaf ressdirhresholds were 15% for L, 3% for PP or
10 for the ratio L and PP over N (Oglesby and Fayi892; Palm and Sanchez, 1991). Plant
materials above these thresholds are expectedtorgmse slowly and to immobilize N due to
the formation of stable polymers between polyphies@nd amino groups and/or binding of
lignin to cellulose. We did not determine L andd®atents of the leaf tissues but other studies
conducted near our site in Cameroon (Norgrove.eP@00) and under similar soil and climatic
conditions in Nigeria (Ibewiro et al., 2000; Tianad, 2000) reported higher L and PP contents
and a higher (L+PP)/N ratio for imperata leaf matesf 18%, 4.6% and 33, respectively, and
low values for chromolaena plant leaf residue ayiegaat 10%, 2.3% and 3.1, respectively.

Beta-glucosidase activity was positively correlateth mass loss. Relative to the non-amended
soils, the activity of 3-glucosidase started toease rapidly with time (Figure 2). In the initial
decomposition process, easily decomposable planpopnents such as low molecular weight
cellulolytic substances are released rapidly. Tdetyas substrate for 3-glucosidase and other
cellulolytic enzymes (Sagar, 1988). Therefore,rthetivity increased with time which later may
decrease as cellulose is being decomposed andyseitroorganisms, and more recalcitrant
plant leaf residue remains (Sall et al., 2003).a88se the quantity of the leaf biomass applied to
each soil was alike, differences in activity of IBegpsidase likely resulted from quality
differences of the amended plant leaf residuesoi@blaena and phyllanthus plant leaf residues
had comparatively lower L and PP contents and ithdisced higher 3-glucosidase activities than
imperata leaf residues. Polyphenols may inhibitUsasidase activity (Benoit and Starkey, 1968;
Swain, 1979) while L may impede the growth of dellytic bacteria and fungi (Roper and
Gupta, 1995), leading to lower mass loss rated@melr decomposition of carbohydrates from
the recalcitrant imperata leaf residues. In addjtibe physical characteristics of the plant leaves
and their placement as surface mulch on top oétile may have affected [3-glucosidase activity.
Imperata leaf material is very bulky and rigid cargd to chromolaena and phyllanthus leaves.
Therefore, the poor imperata residue-soil contadtthe high toughness of the imperata leaf
stalks may have delayed colonization by microorgiasiand limited enzyme diffusion
(Cornelissen et al., 1999; Henriksen and Brelaf822

Conclusion

In conclusion, plant leaf residue type had a striomgact on mass loss and nutrient release of N
and P from decomposing phyllanthus, chromolaendrapdrata residues. After 120 days,
chromolaena and phyllanthus plant leaf residueséladsed nearly three times as much of its
initial pools of N and P than had imperata plaaf lesidue. Beta-glucosidase was greatly
affected by plant leaf residue type and mass lass.input farming in the humid tropical regions
is affected by weed infestation and land degradaimowledge on resource-use efficiency of
invading weeds might help understand the proces$asting nutrient availability in soils
through their return of plant leaf residues diffigrin quality.
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