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Abstract 
In the Brazilian Amazon and at many other forest margins in the humid tropics, small-scale 
farmers depend primarily on low-input agriculture. The mechanization of land preparation is 
often proposed as a profitable and climate-friendly alternative to the traditional fallow-based 
slash-and-burn practice. Yet, adoption rates remain rather low. 
Although the high economic performance of mechanical land preparation in experiments is 
primarily due to fertilization, many proponents tacitly assume that chemical fertilizers are being 
adopted together with the mechanization method. The question that motivates this paper is 
therefore: Why don’t farmers use fertilizers to increase the productivity of the traditional 
production system in the first place?  
Based on farm-household data from 270 smallholders in the Eastern Brazilian Amazon we find 
that factors, such as income, liquidity constraints, labor endowment and social connectedness 
have little or no explanatory power with respect to fertilizer use. Instead, fertilizers seem to be 
used only for crops that are clearly unprofitable without fertilization. In a further step we simulate 
a set of production functions that identify expected yield and yield variance of important annual 
and perennial crops as a function of fertilizer use. The production functions are integrated into a 
quadratic farm-household optimization model that accounts for production and price risks. The 
model suggests that risk aversion can induce farmers to increase or decrease fertilizer use 
intensity depending on how crop yield variance responds to fertilizer application.  
A final section elaborates on the implications of the results for the adoption of mechanized land 
preparation technologies and the design of agricultural research and agro-environmental policies 
in the humid tropics. 
 
1. Introduction 
This paper explores the role of crop yield variability as one among several potential barriers to 
the adoption of fire-free land preparation technologies by small-scale farmers in the Bragantina 
region in the northeastern Brazilian Amazon. We focus on two technologies that substitute the 
traditional manual slashing-and-burning of forest fallows. Namely, mechanical chopping and 
mulching of standing vegetation, a technology that was proposed in order to maintain the fallow-
based nature of annual cropping, and continuous agriculture using tractor pulled plows and 
harrows. Both technological alternatives require the use of chemical fertilizers to complement or 
substitute fallow nutrients and produce yields high enough to cover cash outlays for machine 
services. The expected benefits of fire-free mechanical land preparation are reduced green house 



 

 

gas emissions, nutrient losses, and material damages from accidental fires as well as higher 
monetary returns per hectare through the use of fertilizers (Denich et al. 2004). 
Controlled experiments have shown that average yields of annual food crops are not significantly 
affected by the choice of land preparation technology if equal amounts of fertilizers are applied. 
Hence, using low cost slash-and-burn, farmers could potentially achieve equally high yields using 
adequate amounts of chemical fertilizers (Kato et al. 1999). 
The question that motivates this paper is therefore: Given favorable terms of trade for fertilizers 
and crop products, why do farmers not use fertilizers to achieve higher yields in the first place? 
To answer this question we use a farm and plot level data set collected in the 2001/2 agricultural 
year from 270 farms in three districts and secondary data from controlled yield experiments. We 
first test for the influence of factors that we deem relevant in determining the decision of 
smallholders to use fertilizers in section 2.  
In section 3 we describe the methodology used to generate a set of yield and yield variance 
response to fertilizer functions using stochastic simulation. These functions are fed into a 
quadratic programming model that maximizes the certainty equivalent of whole farm income 
based on the well known “Expected Value Variance” approach. Sections 4 and 5 present the 
results of stochastic simulation experiments and selected model runs. 
The final discussion in section 6 briefly reviews the main conclusions of earlier work on crop 
yield variability and sets these into the context of the eastern Amazon region.  
 
2. Factors that influence fertilizer use 
From an economic point of view, fertilizer use is typically determined by factors, such as relative 
prices, relative scarcity of production factors, and risk preferences. Relative prices are quite 
obviously in favor of using fertilizer for almost all common crops in the region (investing 1 R$ 
per cropping period in NPK increases the 18-year net present value of cassava and bean 
intercropping under slash-and-burn by at least 7 R$) and due to the permanent nature of cassava 
flower production, temporary liquidity constraints are at least not as binding as in the case of 
more seasonal agricultural activities (Börner 2006).  
A Probit regression model was specified to assess how farm level and location specific factors 
affect the probability of fertilizer use in the study area (Table 1). The price of fertilizer has not 
been included as only marginal differences exist between districts. Price differentials might arise 
from transport cost, but were not considered because farmers regularly visit urban centers to sell 
produce. Transport costs would then accrue on the way back home in the form of a fee per bag, 
which depends on the distance to the market. To avoid collinearity problems only the distance to 
market has been used as an independent variable.  
In Table 1, marginal effects can be interpreted as follows: A unitary increase in an independent 
variable increases the probability of using fertilizer by (marginal effect * 100)%. The estimation 
was done using data from 400 plots in the three survey districts that were planted with annual 
crops. Cassava was the most common main crop in all districts. 
The estimates suggest that net per capita income and other farm-household characteristics are 
rather unimportant when it comes to fertilizer use. Instead, fertilizer use seems to depend on the 
type of crop that is to be planted.  
Planting watermelons, cucumbers, or beans increases the probability of using fertilizer by 40 - 
77%. Apart from perennial cash crops, that are also fertilized, these crops are among the most 
nutrient demanding annual cash and consumption crops and would practically not produce 
without fertilizers (Kato et al. 1999). Cassava and corn, on the other hand, produce low but 
sufficient yields without external nutrient supply and, thus, represent a minimum risk alternative 
to activities that require up-front cash outlays. In addition, modern methods used in cassava 
production are not equally well known in all municipalities, as they require a more sophisticated 
management or even mechanical land preparation. The Probit estimates partly confirm this by 



 

 

showing that the probability of fertilizer use drops off in the districts east of Castanhal although 
beans are frequently fertilized even in Bragança. 

Table 1:Probit estimates of the determinants of fertilizer use 

 Probit Model Fertilizer Use (yes/no) 

  

coefficients z-value marginal effect z-value 

Farm-HH characteristics     

Net per capita income (R$/year) 0.00 (1.62) 0.000 (1.57) 

Adult equivalents -0.003 (-1.02) -0.001 (-1.01) 

Age of HH head (years) -0.01 (-1.32) -0.002 (-1.31) 

Dummy participation in cooperation 0.402 (1.58) 0.080 (1.75) 

Dummy machinery access to plot 0.645 (1.13) 0.107 (1.61) 

Dependants in the HH (number) -0.051 (-0.85) -0.011 (-0.85) 

Distance to community center (minutes) -0.009 (-1.56) -0.002 (-1.57) 

Soil quality* -1.22 (-1.70) -0.266 (-1.74) 

Main crops     

Dummy beans 2.525 (9.97)** 0.777 (14.18)** 

Dummy cassava -0.1 (-0.21) -0.023 (-0.2) 

Dummy maize -0.001 (-0.01) 0.000 (-0.01) 

Dummy sweet cassava -0.121 (-0.32) -0.025 (-0.34) 

Dummy cucumbers 1.645 (3.08)** 0.566 (3.11)** 

Dummy watermelon 1.241 (3.29)** 0.408 (2.77)** 

Location     

Dummy Igarape Acu -0.624 (2.48)* -0.119 (-2.77)* 

Dummy Bragança -0.808 (2.82)** -0.159 (-3.1)* 

Constant -0.15 (-0.15)     

Observations 400    

Absolute value of z statistics in parentheses    

* Significant at 5%; ** significant at 1%    

Pseudo R2 0.5185    

Log likelihood  -108.30864    

 
The Probit analysis shows that the measured farm and household characteristics have little or no 
influence in determining fertilizer use. Our hypothesis is therefore that factors related to the risk 
involved in applying fertilizers and the individual attitude of farmers towards these risks help to 
explain the low observed levels of fertilizer use. 
 
3. Modeling crop yield variability 
Agricultural production functions typically express average yield as a function of inputs. For our 
purpose it would be useful to be able to express yield variance as a function of fertilizer 
application. Following Berg (2003), we briefly outline a stochastic modeling approach that 
accomplishes this.  
According to Liebig’s principle of the minimum factor, the maximum attainable output level is 
limited by the minimum input factor, i.e. phosphorus in the case of soils in the Bragantina (see 
Kato 1999). This allows representing the underlying technology as a linear limited production 
function of the form: 
 
y = a-1(x+s) for y ≤ ymax and y = ymax otherwise      (1)  

with ymax = N{ y max, σymax} and s = {s,σs} 
 



 

 

where y is the yield, x is the level of input and a represents the quantity of x required per unit of y. 
ymax (maximum yield) and s (plant available phosphorus in the soil) are assumed to be 
uncorrelated random variables and the sources of uncertainty for the decision-maker.   
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Source: Modified from Berg (1998) 

Figure 2: Linear limited production functions and Monte Carlo simulations 

Depending on the distribution function of ymax and s, a Monte Carlo simulation generates a 
sample of potential progressions of the linear limited function in Figure 2, which allows 
estimating a production function with decreasing marginal productivity (see Mean f(x) in Figure 
2). An additional useful output is the variance function (Variance F(x) in Figure 2) that describes 
the variance of yield depending on x. Note that depending on σymax/σs the variance function can 
be increasing (large σymax small σs) or decreasing (large σs small σymax) with increasing x. This has 
important implications when comparing tropical soils with low nutrient reserves (i.e. low 
potential variability) and soils in temperate zones with higher nutrient reserves (high potential 
variability). Hence, in temperate zones, applying fertilizer can be interpreted as a means to 
reducing yield variance, whereas the opposite can be the case on nutrient poor tropical soils.  
Given Mean F(x) and Variance F(x), the objective function of a stochastic programming model 
with price and production risk, deterministic costs and excluding the covariance of prices and 
yields can be set up maximizing (Berg 2003):  

CE E(y) V(y)
2

λ= −         (2) 

where CE is the certainty equivalent composed of E(y), the expected farm income, V(y), the 
variance of farm income, and λ, the risk aversion parameter.  
 
Omitting correlations between prices and yields, which are not significant in the Bragantina 
region, expected farm income and variance are defined as: 
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where p are prices for activities i, f(x) is the production function of activity i depending on input 
level x (here chemical fertilizer), v is the activity level, c0 and c1 are fixed and variable costs of i, 
FC are fixed farm costs and GM are the activity gross margins. 
 
Omitting v and the covariance terms for simplification the first order condition for the optimal x 
of an individual activity becomes: 

1

2

d
E(p) E[f (x)] c

dx
d d

E(p) V[f (x)] 2V(p)E[f (x)] E[f (x)] 0
2 dx dx

−
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   (5) 

 
Solving for the marginal expected yield results in: 

2
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d
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dx E(p) V(p)E[f (x)] E(p) V(p)E[f (x)]

λ

= +
− λ − λ

   (6) 

 
Examining (6) provides some insight as to how the optimal input level x depends on the variance 
of yields and prices. For example, evidence from the Bragantina suggests increasing yield 
variance in response to fertilizer use. Hence, the derivative of V[f(x)] is positive until its 
maximum, which ceteris paribus leads to an increase of the second term on the right hand side of 
equation 6. The result is a higher marginal expected yield, i.e. a lower optimal input level. The 
same effect has an increase in price variability as it would reduce the denominators of both terms 
on the right hand side. As Berg (2003) shows, the impact of an increase in price variability may 
be neutralized if yield variability decreases in response to fertilizer use, which can be the case in 
temperate zones.  
 
4. Simulated Yield and Yield Variance Response 
Table 2 shows expected yield and variance function coefficients and characteristics for the main 
crop activities in the model. Sources of input parameters for the respective Monte Carlo 
simulations are documented in Börner (2006). 

Table 2: Monte Carlo simulation results for expected yield and yield variance response 

  

Unit Cassava 
Slash&Burn + 

mulching 

Cassava 
mechanized 

Beans 
Slash&Burn 

Beans 
mechanized 

Black 
pepper 

traditional 
(6 years) 

Black 
pepper 

intensive (6 
years) 

    expected value functions   

a 1.32E+04 5.90E+03 2.78E+02 2.34E+02 6.09E+02 8.05E+02 

b 7.34E+02 1.09E+03 1.20E+02 9.99E+01 3.03E+01 6.52E+01 

c -1.41E+01 -1.77E+01 -4.48E+00 -2.64E+00 -1.07E-01 -2.51E-01 

Coefficients 

d 8.45E-02 9.29E-02 5.27E-02 2.31E-02 4.78E-05 2.59E-04 

Coefficient of determination R 0.98 1.00 0.99 1.00 1.00 1.00 

    variance functions   

a 7.78E+07 1.32E+08 6.50E+04 7.48E+05 1.22E+06 3.18E+06 Coefficients 

b 2.11E+01 5.46E+01 1.55E+03 1.98E+01 6.11E+01 2.26E+02 

2 2a bx cx dx+ − +

a
d

1 bexp(cx)
+

+



 

 

  

Unit Cassava 
Slash&Burn + 

mulching 

Cassava 
mechanized 

Beans 
Slash&Burn 

Beans 
mechanized 

Black 
pepper 

traditional 
(6 years) 

Black 
pepper 

intensive (6 
years) 

c -1.77E-01 -1.40E-01 -6.02E-01 -1.80E-01 -3.98E-02 -4.73E-02 

d 1.35E+07 3.46E+07 8.20E+03 -5.47E+03 8.28E+04 1.87E+05 

Coefficient of determination R 1.00 1.00 1.00 1.00 1.00 1.00 

    maximum expected yield    

Fertilizer kg P/ha  31 42 22 35   

Fertilizer kg N/ha     158 180 

Expected value of yield kg/ha 24877 27356 1303 1484 2901 5916 

Standard deviation of yield  9231 12191 270 854 1085 1798 

    minimum variance    

Fertilizer kg P/ha  0 0 0 0   

Fertilizer kg N/ha     0 0 

Expected value of yield kg/ha 13172 5895 278 234 609 805 

Standard deviation of yield   4125 6081 91 175 320 448 

 
Monte Carlo simulations involved 1000 iterations and expected value and variance functions 
were estimated from the results. Several functional forms were tested and the best fit was 
obtained using the convex section of a cubic function for the yield response and a weibull 
specification for the variance response to fertilization  
For cassava, maximum yields and standard deviations correspond to the average yield of the 4th 
quartile of yields observed for slash-and-burn and mechanization in the 2001/2 cropping season. 
Based on farmer interviews it was assumed that every sixth harvest is reduced by 75% due to 
diseases (Phytophtora spp., Pythium scleroteichum). 
 
5. The Impact of Risk Aversion on Fertilizer Use 
In the stochastic programming model, yield and yield variance response functions were linearized 
for each production activity using four model activities. Then the model was run with varying 
risk aversion parameters to assess the impact of risk aversion on fertilizer use and crop mix. We 
assume an average type of small-scale farm with ca. 15 hectares of land and 5 family members 
that represents roughly 50% of our farm-household sample (Börner 2006). 
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Figure 3: Expected Value Variance tradeoff curve for the stochastic programming model 

λ = 0.03 



 

 

Figure 3 demonstrates by how much the expected present value of discounted farm income 
decreases in order to reduce income variance by a given amount (black line). The grey line in 
Figure 3 has the slope of the risk aversion coefficient at the point of tangency with the expected 
value variance tradeoff curve and crosses the vertical axis at the certainty equivalent that 
corresponds to the respective degree of risk aversion.  
Figure 4 demonstrates how increasing levels of risk aversion affect crop mix and fertilizer use for 
the crops under study. The simulation assumes that the chop-and-mulch technology can be 
offered at 50% of its estimated service costs (see Börner 2006). This assumption was necessary 
for chop-and-mulch to enter the optimal solution. 
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Figure 4: Crop mix and fertilizer use for different levels of risk aversion 

 
The figure somewhat confirms the results obtained in section 2 by showing that fertilizer use is 
affected in different ways by increasing risk aversion depending on the type of crop. While 
fertilization of black pepper is hardly influenced by risk aversion, fertilization of beans increases 
at low and then decreases at high levels of risk aversion. Fertilization of cassava fluctuates 
depending on the optimal mix of land preparation technologies, but ultimately reduces to levels 
below 50 kg of NPK per hectare.  
 
6. Discussion and Implications 
In 1989, Anderson and Hazell compiled empirical studies on the variability of grain yields and 
found that the more intensive use of purchased inputs can indeed lead to increased yield 
variances. Their final remarks, however, remain inconclusive with regard to fertilizer use as the 
results of the studies they consider are somewhat contradicting, i.e. reduced yield variability 
through fertilization in Germany and increased variability in the Philippines.  
As mentioned in section 3, our approach suggests that this is due to the differences in soil nutrient 
content and climate variability in tropical and temperate climate zones. 
Although we do not intent to propose that crop yield variability is the single most important 
determinant of fertilizer use in the Bragantina region, we show that it can be a critical factor in 
the case of cassava production. Like many other root crops, cassava is more sensitive to the (often 



 

 

climate dependent) incidence of Phytophtora spp., Pythium scleroteichum especially if harvested 
material is used for re-planting.  
In the northeast of Pará, other than in many other parts of the world, cassava is a high value crop 
as it is on-farm processed to cassava flour that can yield a high market value. Prices for cassava 
flour can be highly variable at the local scale, which further increases risk for small-scale farmers 
that have no links to markets beyond the local marketplace.  
Therefore we expect the average type of smallholder in the Bragantina region to be extremely 
reluctant in adopting mechanical land preparation technologies for cassava production as long as 
these require the use of fertilizers to be profitable alternatives to slash-and-burn. Since cassava 
production accounts for more than 60% in the land use mix on most of the farms in the 
Bragantina region, the potential for the existing mechanical alternatives to slash-and-burn 
remains rather low under current conditions.  
Under the assumption that the introduction of mechanical land preparation is a desirable objective 
(see Börner 2006 for a more detailed discussion of this issue), a series of instruments exist that 
could potentially reduce the risks involved in small-scale cassava production.  
Among these are price guaranties or crop-yield insurances that could be linked to specific land 
preparation technologies. The Brazilian PROAGRO program can serve as an example in this 
regard. Although PROAGRO was in high deficit during its early years, today it has become an 
important and popular complement of rural credit schemes. 
Moreover, new cassava varieties that are less susceptible to the common diseases do exist, but are 
poorly disseminated. This also holds for innovative pest management practices that have proven 
successful in experiments, but have not yet found their way into the rural extension agenda.  
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