Soil Degradation by different Land Use Impacts in Tropical Rainforests and Consequences for Land Rehabilitation

Gerhard Gerold

Landscape Ecology Unit, Institute of Geography, University of Göttingen, Goldschmidtstr. 5, 37077 Göttingen, Germany

Introduction

Despite the existence of international resource protection programs since the UNCED conference 1992 in Rio de Janeiro (AGENDA 21), rainforest conversion by non sustainable forestry as well as colonization accompanied by clearcutting continues. Following FAO (2001), the annual rate of rainforest disappearance in SE-Asia (Indonesia), Africa (Congo Basin), and Latin America (Amazonia) is 0.4 to 1.2%. Different types of disturbance as well as conversion sequences have specific consequences on matter turnover depending on climate, vegetation and soil.

According to Jordan (1985) and Brouwer&Riezebos (1998), the consequences of logging, slash&burn, annual crops and perennial tree crops on natural tropical forests are:

Decrease of biomass bound nutrient stocks due to nutrient uptake by crops, export with yields and burning; disturbance of the internal nutrient cycle with loss of organic litter layer, root mat and therefore higher nutrient leaching, decrease of soil organic matter and decrease in cation exchange capacity and plant available soil nutrients (e.g. Gerold 2001), soil erosion and degradation of the humus horizon and decrease of evapotranspiration. To avoid these, sustainable multi cropping systems or agro forestry systems are appropriate, but knowledge on water- and nutrient cycling in comparison with rain forest systems is still scarce. Based on project studies in Ecuador/Bolivia (Amazon basin), West Africa (Ivory Coast rainforest), and Indonesia (lowland rainforest in Sulawesi), consequences of clearcutting and agro-forestry (cocoa) on soil, water and nutrient cycling have been investigated.

The objective of this study was to compare changes of water- and nutrient cycling with conversion of rainforest to agro-ecosystems, especially referring to the supposedly sustainable cocoa plantations on sites in Ecuador and the Ivory Coast with low to medium soil fertility..

Methods and experimental research sites

Project region characteristics

The studies were carried out in the moist evergreen rain forests of Ecuador (1996-2000) and Ivory Coast (West Africa, 2001-2004) and moist semideciduous rain forest of Ivory Coast (1995-1998). These areas are part of the humid inner tropics (Af a. Köppen) with monthly air temperature between 24-28°C and relative humidity between 75-81%. Because of different latitude (table 1) the moisture regime changes from the equatorial tropics in Ecuador with high rainfall per year (3050 mm) and >150mm/month to the seasonal inner tropics with bimodal rainfall distribution in Ivory Coast (1862 a. 1320 mm) with dry season (Harmattan) from December to January (Tai) or December to February (Bossématié). According to the climate situation of Ivory Coast with decreasing rainfall from SW (coastal zone) to NE on the moist evergreen forest follows the moist semideciduous forests, which was most important for timber production. Moderate rainfall with a longer drier season results in less soil nutrient depletion, which has been studied for the climatic and degradation gradient (due to timber exploitation) of state forests in Ivory Coast (moist evergreen to moist semideciduous forests, Gerold 1997). On the shallow dissected peneplains, typical soil catenas with Plinthosols, Ferralsols, Cambisols, Acrisols and Arenosols (FAO) occurr in all rain forest types from top to valley bottom. Therefore, within each climate-vegetation unit soil fertility depends on the soil units. Acrisols, Arenosols and Gleysols are the poorest soils, but the area of soil units with higher fertility and also the soil nutrient level decreases with the increasing rainfall or with increase of forest degradation (Gerold 1997). Overexploited forest soils show a significant decrease of humus content and therefore available nutrient decrease (CEC). Analysis of nutrient development on plinthic Ferralsols in the agricultural buffer zone of Bossématié state forest (shifting cultivation with maize/maniok/banana) after 30-40 years of traditional rotation shows N,P, Ca and K deficiencies in the topsoil (Gerold 1997).

In the Oriente of Ecuador (western part of Amazonian lowlands) soil differentiation and soil quality (chemical soil properties) is mainly influenced by the equatorial humid climate (table 1) and relief differentiation (age sequence) with tertiary hills, two peneplains and alluvial plain. Main soil types (USDA) in this relief sequence are oxic Dystropepts, andic Dystropepts and Eutropepts, Tropaquepts and Udivitrands. Under the consideration of the physical and chemical soil parameters as well as the usable soil depth, the soil utilisation potential can be ranked with following sequence (Gerold&Schawe 1999):

Andic Eutropepts>>Andic Dystropepts>Tropaquepts>>Typic Udivitrands>Oxic Dystropepts Soil nutrient analysis and plant nutrient analysis (cocoa, coffee, banana, yucca, palma africana) shows mainly P & Mg deficiency with high P-fixation correlating with andic properties.

Region	Vegetation a.	Climate	Soil unit	Soil fertility*
	human impact		a. USDA/FAO	
Oriente Ecuador-	Moist evergreen	Afh; tropical	Andic Dystropept/	Low-medium
Coca	rain forest,	humid without arid	Dystric Cambisol	
0°25′S, 76°55′W	slash&burn a. tree	month		
	plantation			
Ivory Coast-Tai	Moist evergreen	Af; tropical humid	Plinthudult/	Low-medium
5°50′N, 6°50′W	rain forest;	with 2 arid month	Ferric plinthic	
	slash&burn a.		Acrisol	
	cocoa plantation			
Ivory Coast-	Moist semi-	Af; tropical	Plinthic Eutrudox/	Medium
Bossématié	deciduous rain	subhumid with 3	Plinthic Ferralsol	
6°29′N, 3°27′W	forest; selective	arid month		
	logging, cocoa			
	plantation			

Table 1. Site characteristic	c and human impact
------------------------------	--------------------

* Evaluated after soil nutrient supply for maize and cocoa (ACRI 2004, Landon 1984, Sys et al. 1993) a. project results from Coca (LANFER 2003), Tai (FISCHER 2004), Bossematié (HETZEL 1999)

In both countries, the lowland rainforests are influenced since 1960-70 by timber extraction and spontaneous colonisation with small farmers, due to continuous migration of daylabourers and small farmers from the Andes (Sierra&Costa) in Ecuador and from the savanna regions in Ivory Coast with high population increase (3-4%/year). In the project region of Coca (Ecuador), land use systems are dominated by cattle ranching and cocoa and coffee plantations, whereas in the Ivory Coast forest, conversion was mainly done for cocoa plantations (export crop). Due to the expansion of agricultural areas, rain forests show a rapid reduction and destruction with conversion rates between 0,6-4,9%/y, according to satellite image analysis (table 2). Therefore, rainforest conversion often takes place on soils with low fertility, resulting in unsustainable production and income. Outside the national parks and state forests virgin forest soils in both regions will disappear within the next decade, so development of sustainable production with permanent crops (cocoa, coffee, fruit trees) for small farmers with agro-forestry systems is essential even on nutrient impoverished or light degraded soils.

Region – year	Rain forest	Tree	Annual crops	Total	Forest
(total area in ha)		plantation a.	a. pasture	conversion	conversion
		cocoa		(ha / %)*	(%/year)
	Reference year	(ha) and change	detection in %		
Ecuador-Coca					
22.299 ha area	8.362	-	-	4.874	
1986 – 1999 (%)	-58,2			-21,9	-4,9
Bolivia – Santa					
Cruz 5.819.700	5.347.400	77.900	323.500	1.596.224	
1984 - 2001 (%)	-6,2	+8,1	+332	-27,4	-1,7
Ivory Coast Tai					
315.300 ha	86.771	165.848	58.015	7.723	
1986-2001 (%)	-8,9	+9,3	-1,3	-2,5	-0,6

Table 2. Rain forest conversion for crop cultiv	vation in the project regions of Ecuador,
Bolivia and Ivory Coast	

*reference total area

data a. Hahn 1997, Krüger 2003, Gerold a. Lanfer 2001, Sültmann 2003

Methods for water and nutrient fluxes on experimental field sites

Within the project regions the dominant relief-soil units (peneplain&soil type) for different land use types were selected to compare main components of the vertical hydrological cycle excluding differences in inclination (lateral flows). Also, overland flow with nutrient loss did not occurr. Coupled with nutrient concentration measurements for the main input-/output fluxes and soil nutrient analyses, a complex investigation and calculation of the nutrient balance was possible. On the basis of previous regional field studies on soil differentiation, soil quality and land use differentiation (Gerold 1997, Gerold&Schawe 1999, Fischer 2004) the research plots for the agro-meteorological data logger stations were selected and instrumented. The measured parameters are listed in table 3. Litter input was collected monthly with 1m² boxes in 1m height. Details on instrumentation, parameter discussion, measuring intervals, water- and soil analysis and accompanied field analysis of frame parameters (e.g. HEMIVIEW pictures for LAI) are described in Fischer (2004-Tai, Ivory Coast), Hetzel (1999-Bossématié, Ivory Coast) and Lanfer (2003-Ecuador). Site instrumentation for the comparison of water and nutrient fluxes on different vegetation/land use types within the same relief-soil unit is shown in table 3. For the calculation of water- and nutrient uptake by plants and plant available soil nutrient stock the root depth was restricted due to pedophysical (plinthic horizon) and pedochemical (very low CEC_{eff.}) restrictions in the B-horizon until 40cm (Ecuador) and 40(Tai)-50cm (Bossématié-Ivory Coast), so that nutrient leaching was calculated with 75-90cm and 105-120cm lysimeter nutrient concentrations. TDR-soil moisture measurements enables the calculation of aET parallel to the PENMANaET with the soil water difference method and the approximate calculation of nutrient uptake by the plants. For the agro-ecosystems, yield estimation (cf. table 4) and nutrient analysis of yield products leads to an estimation of yearly nutrient export.

Results and discussion

From the perhumid Ecuadorian site to the humid and subhumid sites in Ivory Coast a clear decrease of rainfall exists. Between the same vegetation units, interception loss is in the same magnitude (table 4) and comparable with rainforest data from literature (Bruijnzeel 1990). For

agro-forestry systems data are scarce. Throughfall increases with the rainfall gradient, which leads to high soil moisture contents in Ecuador through the year.

Parameter	Sensor/calculation	Height	Accuracy
Air temperature	RTD Pt100	2m above canopy	+- 0,1 K
		surface	
Air humidity	Rotronic-hygrometer C80	"	+- 1,5%
	(with ventilation)		
Anemometer	A100R (start at 0,25m/s)	"	+- 0,1m/s
Photosynthetic active radiation	PAR type QS	"	+- 3% (240-650nm)
Global radiation a. Albedo	Pyranometer type 8101	"	$+-5\%(0,3-3,0\ \mu\text{m})$
Net radiation	Pyrradiometer type 8111	"	<30 W/m2 (0,3-100
			μm)
Rainfall	Aerodynamic raingauge	1,2 m	Water collection for
	ARG100 with 500cm2,		nutrient analysis
	Throughfall additionally 40		every morning
	bulk sampler		and/or 2x/week
Soil temperature	Fernwall-Thermistor TH2	3,10,30,50,70,120	+- 0,1 K
		cm depth	
Soil heat flux	Heat flux plate	3 a. 10 cm depth	
Soil moisture	Sensor Trime-MUX6	20,40,60,90,120	+- 2% (0-70 Vol.%)
		cm depth	
Soil solution	Soil lysimeter (3 per depth)	20,40,70,120 cm	Sampling suction
		depth	0,6 bar; water
			collecting weekly
pET	after PENMAN, modified		
	by DOORENBOS a, PRUIT		
aET	Modified PENMAN-pET		In Ivory Coast
	with $r_a + r_c$		additionally with
			soil water
			difference method

Table 3. Field methods – parameter and configuration of data-logger stations

Table 4. Water fluxes in rainforest and agro-ecosystems in Ecuador and Ivory Coast (in mm/year)

Region/land use	Rainfall	Throughfall	AET (%I)*	Drainage Water
Ecuador (1997-98)- rain	3050	2596	1803 (15)	1247
forest				
Ecuador - cocoa	3050	2750	1746 (10)	1304
Ecuador – coffee	3050	2691	1507 (12)	1543
Ecuador - pasture	3050	-	637	2413
Ivory Coast (2002)- rain	1862	1620	1527 (13)	335
forest - Tai				
I. C. – cocoa-Tai	1862	1657	1322 (9)	540
I.C. (1996)- seasonal rain	1320	1108	1077 (16)	243
forest Bossématié				
I.C. – cocoa - Bossématié	1320	1206	962 (9)	358

* AET a. modified Penman-Monteith, I = Interception

data from own projects with Hetzel 1999, Lanfer 2003, Fischer 2004

After soil suction measurements only 40 days at rainforest site and 14 days at pasture crosses the level of 100hPa with restricted infiltration loss (Lanfer 2003). Contrarily, deep drainage water in the semideciduous rain forest occurs only during the main rainy season from April to June, at the cocoa site from April to August (Hetzel 1999). With the change from rainforest to tree plantation and pasture interception and transpiration loss decreases and drainage water within the same soil units increases. Absolute values depends to the climatic region (table 4). Not only due to the increase of nutrient concentration in drainage water after forest conversion (which happens mostly in first two years; Uhl&Jordan, 1984), but in longer run due to the higher leaching amount soil nutrient depletion occurs. As an example, the Ca&Mg concentration in drainage water at the cocoa site in Bossématié is half of the forest site, but nutrient loss by leaching is in the same order of magnitude (table 7).

Region	Annual	Annual	Ca	Mg	K	Р	Ν
_	Rainfall*	Drainage*					
Ecuador-	3050	1247					
Coca ¹			-9,2	-4,6	16,2	2,0	13,9
Venezuela-	3565	1595					
San Carlos ²			7,0	2,8	8,0	-5,5	-2,6
Brazilia-	2300	1225					
Jari ³			-1,0	-4,8	-2,5	0,1	
Brazilia-	1956	455					
Belém ⁴			9,0	14,0	5,0	2,8	18,0
Ivory Coast-	1862	335					
Tai ⁵			6,8	1,3	5,7	5,8	19,7
Ivory Coast-	1810	630					
Banco ⁶			-13,0	2,7	4,2	2,1	8,6
Ivory Coast-	1320	158					
Bossématié ⁷			2,1	-2,5	8,3	6,4	13,1

Table 5. Approximate nutrient budget (rainfall – leaching) for different rain forest sites in South America and West Africa (in kg/ha*y)

Data from own projects (Hetzel 1999⁷ Lanfer 2003¹, Fischer 2004⁵ a. Bruijnzeel 1990^{2,3,6}, Hölscher 1995⁴; * in mm/year

Including some results from other research sites for the evergreen rain forest in South America for the external nutrient budget (rainfall – leaching) we see, that for main nutrients often Ca and Mg are leached in a higher extent in relation to the rainfall input. The positive balance in eastern Amazonia (Belém) results from higher nutrient concentrations with the atlantic airmasses despite lower rainfall amount in relation to western and central amazonia. Also in West Africa maritime air mass (SW-monsoon) and the continental dust input with the Harmattan during the dry season contributes to similar or even higher rainfall nutrient inputs (s. Tab. 7). The incident rainfall nutrient flux at Coca for Ca, Mg and K is comparable to inner amazonian sites of San Carlos (Venezuela) and Jari (Brazilia) (Bruijnzeel 1990), whereas the eastern Amazon (Belém, Hölscher 1995) is influenced by the atlantic air mass with much more higher nutrient concentrations and input for Ca, Mg, Na-cations. Also, rainfall in West Africa is more influenced by the SW-monsoon (rainy season) and Harmattan (dry season) with enriched dust deposition, so that despite lower rainfall per year at Tai nutrient input has comparable level to Coca and in the seasonal rainforest the input for Ca, Mg, K is doubled. The dry deposition in the Bossématié for the cations (Ca, Mg, K, Na) has a portion of 15-20% (2-3 kg/ha*y,Walter 1998).

Comparing the different land use types in Ecuador, the doubling of drainage water from forest site to pasture causes for critical elements a 3-4x higher nutrient loss by leaching (table 6). After 20-30 years for great pasture areas in South America, soil degradation happened, due to burning and nutrient leaching (Barber 1995). Soil nutrient development, analysed with false time series on traditional shifting cultivation plots for the plinthic Ferralsols at Bossématié shows nutrient deficiency for Mg, K and P after 30 years (Gerold 1997). But the 25 years old cocoa plantation still have available nutrient stock for the macronutrients (table 7) above critical levels (Schroth&Pity 1992). In the Tai-region for cocoa only P-stock (290 kg/ha) is critical, due to higher leaching and P-fixation by high Fe-Al-oxides in the soil. Because of different water balance (throughfall and drainage water) rainforest and cocoa plantations in the Tai-region have less nutrient leaching (except P) than at the Ecuador-site. The same leaching level at Bossématié depends on the higher nutrient status of the soils with higher

Vegetation/land use	Rainfall			Throughfall			Leaching		
	Ca	Mg	Р	Ca	Mg	Р	Ca	Mg	Р
Rain forest	8,1	2,2	2,1	53,4	16,8	13,7	17,3	6,8	0,1
Cocoa plantation	8,1	2,2	2,1	20,0	15,0	8,3	12,2	3,8	0,1
Coffee plantation	8,1	2,2	2,1	12,8	4,9	8,1	32,3	6,6	0,2
Pasture	8,1	2,2	2,1	-	-	-	63,3	38,0	0,4

 Table 6. Nutrient fluxes in different agro-forestry systems and pasture in the Oriente of Ecuador (for critical elements in kg/ha*y)

Vegetation/land use	Rainfall - Leaching			L	Litter input			Soil nutrient stock* a. CEC (kg/ha)		
	Ca	Mg	Р	Ca	Mg	Р	Ca	Mg	P ₅₅₀	
Rain forest	-9,2	-4,6	2,0	508,6	53,3	25,2	3.060	712	42	
Cocoa plantation	-4,1	-1,6	2,0	120,9	32,8	7,3	4.309	339	34	
Coffee plantation	-24,2	-4,4	1,9	81,9	19,4	11,7	3.455	655	109	
Pasture	-55,2	-35,8	1,7	12,2	10,4	3,8	3.560	324	38	

*available nutrients a. CEC_{eff.} (1M NH4Cl), P₅₅₀ and main plant rooting until 0,5m soil depth data from projects with Lanfer 2003, Gerold a. Lanfer 2001

macronutrient concentrations in the soil solution. The different water fluxes causes a significant higher leaching nutrient loss for annual and pasture systems than for agro-forestry systems (cocoa, coffee).

Comparing the main nutrient input fluxes the great importance of the internal nutrient cycle with throughfall and litter input is obvious (table 6,7). In Ecuador the nutrient deficit for Ca, Mg and K (rainfall – leaching) is compensated in rain forest and cocoa system by throughfall enrichment. Litter input, very similar for cocoa in the three research sites plays the main role for soil nutrient supply. The total litter production of cocoa for Ecuador and Ivory Coast is quite similar (5.600 a. 5.500 kg/ha*y), whereas litter production in rainforest types greatly differs (19.900-Coca, 10300-Tai, 7500-Bossématié). In several plot studies on vertical nutrient fluxes the nutrient uptake by plants (above ground biomass) is more or less balanced by the litter input (Jordan 1985). Therefore the relationship between throughfall and leaching is an indicator for the establishment of long term sustainable agroforestry systems. For the cocoa-plantations in Ecuador (Coca) and Ivory Coast (Tai a. Bossématié) these balances are positive for the macronutrients, whereas coffee-plantation and pasture have negative values with the consequence that without external inputs (fertilization) the coffee- and also oil palmplantations (s. Lanfer 2003) have decreasing yields and soil nutrient impoverishment. The pasture is adapted to low nutrient cycling, but the high leaching amount in relation to the nutrient input fluxes leads to further soil degradation (table 6).

Table 7. Nutrient fluxes in rain forest and cocoa plantation in Ivory Coast

Vegetation/land use	Rainfall				Throughfall			Leaching		
	Ca	$\mathbf{M}\mathbf{g}$	Р	Ca	Mg	Р	Ca	Mg	Р	
Rain forest - Tai	7,2	2,5	6,1	20,7	9,9	7,6	0,4	1,2	0,3	
Cocoa (25a) -Tai	7,2	2,5	6,1	20,8	11,4	8,2	5,0	2,7	1,6	
Seasonal rain forest-	14,8	4,6	6,5	25,0	11,8	8,5	12,7	7,1	0,1	
Bossématié										
Cocoa-Bossématié	14,8	4,6	6,5	22,8	12,1	8,0	12,0	5,8	0,1	
(25a)										

(Tai-NP a. Bossématié for critical elements in kg/ha*y)

Vegetation/land use	Rainfall - Leaching			L	Litter input			Soil nutrient stock* a. CEC (kg/ha)		
	Ca	Mg	Р	Ca	Mg	Р	Ca	Mg	P ₅₅₀	
Rain forest - Tai	6,8	1,3	5,8	85,0	35,5	13,8	14.150	3.040	700	
Cocoa (25a) - Tai	2,2	-0,2	4,5	95,4	33,2	3,8	7.030	750	290	
Seasonal rain forest- Bossématié	2,1	-2,5	6,4	171,5	40,3	5,8	11.603	2.240	748	
Cocoa-Bossématié (25a)	2,8	-1,2	6,4	92,0	33,8	1,9	6.057	971	805	

*available nutrients a. CEC_{eff.} (1M NH4Cl), P₅₅₀ and main plant rooting until 0,5m soil depth data from from projects with Fischer 2004, Hetzel 1999

Conclusions

For the same climate-vegetation types and relief-soil units different rainfall amounts and rainfall distribution causes different water fluxes with decreasing drainage water from perhumid amazonian rain forest to atlantic rain forest and semideciduous rain forest. Less nutrient leaching in general is the consequence. Oceanic rainforests (West Africa) possess similar nutrient deposition rates compared to Central Amazonia, due to higher concentrations in rainfall, influenced by SW-monsoon (Na, Cl, Ca, Mg, P) and NE-passat (Harmattan: Si, K, Ca, Mg,N). With rain forest conversion to annual crops or pasture nutrient leaching increase by the factor 3-5, whereas in cocoa plantations the increase is significant lower. The litter input possess an important function for the internal nutrient cycling. For the studied cocoa sites nutrient input with litterfall shows no great difference. Estimation of total input/output relation for the studied cocoa sites (2,1-2,5 for Ca,Mg,K), which includes nutrient uptake and yield export, indicates the possibility of sustainable cocoa agro-forestry systems even on soils with low-medium nutrient status in our research regions. To restore degraded soils, beside the soil nutrient status the knowledge on main nutrient fluxes is important. Agro-forestry systems with regional depending nutrient enriched throughfall and high litterfall can be used for the rehabilitation of degraded soils.

References

ACRI (American cocoa research institute) 2004. Growing cocoa – the world's favorite crop. URL: <u>http://www.acri-cocoa.org/acri/</u>

Barber, R.G. 1995. Soil degradation in the tropical lowlands of Santa Cruz, eastern Bolivia. Land Degradation and Rehabilitation Vol.6, 95-107

Brouwer, L.C. & Riezebos, H.Th. 1998. Nutrient dynamics in intact and logged tropical rain forest in Guyana. In: Schulte, A.& Ruhiyat, D. (Eds.) Soils of tropical forest ecosystems. Springer, Berlin 73-86

FAO 2001. State of the World's Forests. Rom 2001

Bruijnzeel, L.A. 1990. Hydrology of moist tropical forests and effects of conversion. A state of knowledge review. UNESCO 224 p.

Fischer, E. 2004. Einfluss der Landnutzung auf den Nährstoffhaushalt im Teileinzugsgebiet des Hana an der Grenze des Tai-Nationalparks (Cote d'Ivoire). EcoRegio Bd. 14 (in press)

Gerold, G. 2001. The pedo-ecological consequences of different landuse-systems in the lowlands of Bolivia (Dep. of Santa Cruz). In: Garcia-Torres, L., Benites, J, &Martinez-Vilela, A. Conservation Agriculture, a worldwide challenge. ECAF&FAO, Córdoba. 275-279

Gerold, G. 1997. Bodendifferenzierung, Bodenqualität und Nährstoffumsatz in ihrer Bedeutung für die Waldrehabilitation und landwirtschaftliche Nutzung in der Ostregion der Elfenbeinküste. Gött.Geogr.Abh. 100, 147-178

Gerold, G. & Schawe, M. 1999. Bodendifferenzierung und Bodenfruchtbarkeit im Amazonastiefland von Ecuador (Coca). Bamberger Geogr. Schr. H.19, 1-34

Gerold, G. & Lanfer, N. 2001. Agrarkolonisation und Bodennutzungsprobleme im Oriente Ecuadors. Erdkunde Bd. 55, 362-378

Hahn, P. 1997. Vergleich des Informationsgehaltes verschiedener Fernerkundungsdaten zur Erfassung der Landnutzungsentwicklung im amazonischen Tiefland von Ecuador. Diplomarbeit Göttingen

Hetzel, F. 1999. The water and nutrient cycle in a tropical rain forest and a cocoa plantation in Cote d'Ivoire. EcoRegio Bd. 2, 147 p.

Hölscher, D. 1995. Wasser- und Stoffhaushalt eines Agrarökosystems mit Waldbrache im östlichen Amazonasgebiet. Gött. Beiträge zur Land- u. Forstwirtschaft in den Tropen und Subtropen H.106, 134 p.

Jordan, C.F. 1985. Nutrient Cycling in Tropical Forest Ecosystems. J.Wiley, New York, 179 p.

Krüger, J.P. & Gerold, G. 2003. Estimation of a potential landscape development regarding factors of forest conversion and soil degradation in eastern Bolivia.- Dt. Tropentag www.tropentag.de/abstracts/full/99.pdf

Landon, J.R. 1984. Booker Tropical Soil Manual. London

Lanfer, N. 2003. Landschaftsökologische Untersuchungen zur Standortbewertung und Nachhaltigkeit von Agroökosystemen im Tieflandsregenwald Ecuadors. EcoRegio Bd.9, 226 p.

Schroth, G. &Pitty, B. 1992. Rapport de mission pour le projet "Stabilisation des systèmes de production agricole dans la région d'Abengourou » - aspects agro-écologiques. Abidjan 64 p.

Sültmann, C. 2003. GIS- und Satellitenbildgestützte Landnutzungsklassifikation mit Change detection im Westen der Cote d'Ivoire. Diplomarbeit Göttingen

Sys, I.C., van Ranst, E., Debaveye, I.J. &Beernaert, F. 1993. Land Evaluation, Part III: Crop Requirements. Brussels, 199 p.

Uhl, Ch. & Jordan, C.F. 1984. Succession and nutrient dynamics following forest cutting and burning in amazonia. Ecology 65, 1476-1490

Walter, N. 1998. Atmosphärische Nährstoffeinträge in das Regenwaldschutzgebiet "FC Bossématié" in der Ostregion der Cote d'Ivoire. Diplomarbeit Göttingen