

Evaluation of a Worldwide Collection of Safflower for Morphological Diversity and Fatty Acid Composition

Muhammad A. Khan¹, Sabine von Witzke-Ebrecht¹, Brigitte L. Maass², Heiko C. Becker¹

1Georg-August-University Goettingen, Institute of Agronomy and Plant Breeding, Germany 2Georg-August-University Goettingen, Institute for Crop and Animal Production in the Tropics, Germany

Introduction

Carthamus tinctorius, family Compositae One of the important underutilized oilseed crops Self-pollination with less than 10% out-crossing Plant height varies from 30–90 cm Root depth is up to 300 cm 120 frost-free days growing season Alternaria blight leaf spotting disease, Sclerotinia head rot, rusts

Importance

Oilseed crop: Safflower oil contains two major fatty acids i.e. oleic acid and linoleic acid

Dying purpose: Produces water-soluble yellow dye carthamidin, and a water-insoluble red dye carthamin

Methodology Used

- Comprehensive germplasm collection
- Agro-morphological evaluation at Reinshof
- Goettingen
- Analysis of fatty acid composition
- Calculation of averages, correlation and analysis of variance
- Grouping of accessions into geographical
- provenances.
- Cluster analysis

Mean values and ranges of traits							
Variables	Minimum	Maximum	Mean				
Days to flowering	194	233	211				
Plant height (cm)	50	130	90				
Palmitic acid (%)	1.8	12.8	6.3				
Stearic acid (%)	0.31	5.8	1.8				
Oleic acid (%)	7.8	29.4	13.6				
Linoloic acid (%)	61.2	83.5	76				

Correlation between traits								
Variables	Days to flowering	Plant height	Palmitic acid	Stearic acid	Oleic acid			
Plant height	0.660**							
Palmitic acid	-0.003	-0.069						
Stearic acid	-0.171*	-0.216**	0.230**					
Oleic acid	0.059	-0.036	0.298**	-0.103				
Linoleic acid	-0.081	0.019	-0.524**	-0.110	0.928*			

Agro-morphology studied

Days to flowering Plant height Spininess Flower colour

Head size Branching pattern Disease susceptibility

Fatty acids studied

Palmitic acid Stearic acid Oleic acid Linoleic acid

Eastern Central Southern Europe (Eeu) Europe (Seu) South Western Asia Westerr Europe (Cw Africa (Af) (Swa) Italy Portugal Ethiopia Afghanistar Kenya erbaijan/ Ira ussia Slovaki Spain akistan ance oland Sovietustria Egypt srael Mediterran witze ean (Med) Bulgaria North ordan epublic Turkey (Na) Funisia East Asia (Ea) ource of 168 19.21** 121.5** 0.47** 0.13** 8.09** 13.94** Accessions Ea 12 30.42** 86.54 0.42* 0.10 16.7** 22.06** 33 21.60* 116.8** 0.49* 0.15** 8.27** 17.80** Eeu 13 30.40** 243.1** 0.79* 0.06 6.81** 14.53** 41 5.24** 90.71** 0.26* 0.04 0.72 3.21** Cwe 14 11.26** 136.9** 0.43** -0.003 3.32+ 12.41** Seu 7.81* 0.30* 0.09+ 5.06* 9.76* Med 18.30 0.16 16.6** 14.68** 19 10.31** 31.58 0.50 Na

corresponding mean squares

Hypotheses

- Accessions from a specific region have a specific seed quality
- A large diversity is present in worldwide collection of safflower

Objectives

Dendrogram for

Cluster analysis

ased on agro-

morphological

traits and fatty

(Euclidean

distance as

dissimilarity

measure

acid composition

193 acc

produced by

- To assess diversity of agro-morphological traits and fatty acids
- To study the relationships between agromorphological traits, fatty acids and geographical provenance

Main findings/conclusions

Large variation in agro-morphological characteristics and fatty acid composition is available in germplasm evaluated

- > The trait expressions were within the known range
- Variance was larger within geographical groups than between them
- >There is no clear relationship between diversity pattern and geographical groups
- No clear patterns of plant types were detected by cluster analysis

Prospects

Biodiversity in safflower germplasm points out that there is a large potential for the improvement of safflower for both agronomic and qualitytraits

Acknowledgements

Authors are thankful to the StollVita-Stiftung, Waldshut for financial assistance

Grouping of Accessions