

Deutscher Tropentag, October 9-11, 2002, Witzenhausen

"Challenges to Organic Farming and Sustainable Land Use in the Tropics and Subtropics"

Soil Organic Matter Turnover in Pasture Sites Following Deforestation in the Humid Central Amazon of Brazil

Barbara Wick¹, Edzo Veldkamp¹, William Zamboni de Mello²

Abstract

We studied the organic matter cycling characteristics in the humid central Amazon of Brazil. Total C and natural 13 C abundance (δ^{13} C_{V-PDB}) in the whole soil and in the microbial biomass (labile pool) was followed along a chronosequence of pasture sites of 6 months up to 60 years after deforestation.

The δ^{13} C natural abundance in the whole soil decreased from -27% under undisturbed forest sites to -23% in the 60-year-old pasture site, and from -30% to -19.4% in the microbial biomass.

An increase of total soil organic C in the whole soil occurred during the first 2 years of pasture establishment and was due to an increase in grass-derived C (C_4). After this 2 years, C_3 -C decreased by 25 % and remained at this level up to 8 years following deforestation. Thereafter, C_3 -C declined steadily. Grass derived carbon was similar at all sites (\sim 8 g kg⁻¹) once the pastures were established after 2 years. In the microbial biomass, C_3 -C declined by 60 % during the first 2 years of pasture establishment. From 2 to 4 years following forest cutting C_3 -C increased for a short period and declined then steadily with pasture age. Contrary to the whole soil, C_4 -C in the microbial biomass increased during the first 6 years following pasture establishment. Thereafter, it decreased continuously. The overall decrease of total C in the pastures with time following deforestation was due primarily to the loss of C_3 -derived carbon. The loss of C_3 -C from the system started much earlier in the microbial biomass compared to the whole soil. Sixty years following deforestation and pasture establishment the loss of C_3 -C was 60 % in the whole soil and 80 % in the microbial biomass.

Keywords: Amazon, microbial biomass, organic matter transformation, pasture sites, whole soil

Contact Address: Barbara Wick, Humboldt University Berlin, Division of Soil Science and Site Science, Invalidenstraße 42, 10115 Berlin, Germany, e-mail: barbara.wick@agrar.hu-berlin.de

¹Humboldt University Berlin, Division of Soil Science and Site Science, Germany

² Universidade Federal Fluminense, Brasil