

Universität Hohenheim

The Uplands Program (SFB 564) Subproject D3

Testing GIS/RS based approaches for estimating village boundaries – the case of a region in North-west Vietnam

M. Sc. Geographer Peter Lentes

University of Hohenheim Department of Agricultural Economics and Social Sciences in the Tropics and Subtropics (490 C) 70593 Stuttgart / Germany E-mail: lentes@uni-hohenheim.de

The Study Area

Income Structure

Family income

Farm income

Food crop value sold

Problem

As the income differs much according to the land endowment of a village, boundaries are indispensable for the linkage of agricultural activities with space and natural resources

➢Official information on boundaries and size of village land is not available

Limited accuracy and of participatory mapping

➢GPS assisted mapping not accepted by local authorities

Available material for the village territory assignment:

GIS/ RS database:

- ≻Communal boundaries,
- ≻Village location,
- ≻Digital elevation model and derived products,
- ≻Original and classified Satellite Landsat7 imagery.

Survey database:

- ≻Key person that covered the entire study area,
- ≻Micro survey of 6 villages,

➢ Field experience and results of semi structured interviews and RRA methods.

- 1000 m buffer around village centre: first approximation buffer with a radius of 1000 meters around each village centre. Not considered: land cover, village size (households)
- 2. Village size considered with calculated buffer: Total village land size estimated with survey data; Buffer size according to village village size Not considered: land cover
- 3. Thiessen polygons, "optimal allocation"
 Construction of Thiessen Polygons was modified to consider accessibility with a weighted cost distance grid.
 Not considered: land cover and village size

Buffers Around Village Centres

- 1000 m buffer around village centre: first approximation buffer with a radius of 1000 meters around each village centre. Not considered: land cover, village size (households)
- 2. Village size considered with calculated buffer: Total village land size estimated with survey data; Buffer size according to village village size Not considered: land cover
- 3. Thiessen polygons, "optimal allocation"
 Construction of Thiessen Polygons was modified to consider accessibility with a weighted cost distance grid.
 Not considered: land cover and village size

Optimal Allocation

The boundaries are set on the places, where the access cost between the villages in question is equal.

- 4. Land polygons calculated village area and additional criteria
- Participatory mapping, group discussions and expert knowledge indicate:
 Watersheds are often used as natural boundaries
 Agricultural land typically lies near the village center
 Villages close to each other have no clear boundaries
- > Average land size per family from micro survey data
- ➤ Land cover data: soil classes, area with crops and urban
- > Infrastructure: accumulative cost and optimal allocation
- DEM derived watershed boundaries
- Difference in altitude from the village to the fields as small as possible

Classified Landsat Scene (April 2000)

Land Polygons

Land Polygons

Village Territory Comparison

Village territory comparison

		Territory assessment method			
		1000 m	average	land	
Inclination Classes	Statistic Parameters	buffer	buffer	polygon	
	Mean	59,7 ^{a,b}	24,7 ^c	25,2	
	95% Confidence				
>1° not inclined	Interval	13,1	7,6	9,1	
	Mean	9,6 ^{a, b}	2,3 °	2,3	
1° - 2° very weakly	95% Confidence				
inclined	Interval	4,1	0,7	0,7	
	Mean	20,4 ^{a, b}	11,1 °	10,8	
2° - 5 ° weakly	95% Confidence				
inclined	Interval	5,3	5,1	5,3	
	Mean	25,3 ^{a, b}	12,1 °	12,5	
5° - 10° moderately	95% Confidence				
inclined	Interval	4,2	3,4	3,6	
	Mean	29,0 ^{a, b}	11,9°	11,9	
10° - 15° strongly	95% Confidence				
inclined	Interval	3,8	2,8	2,9	
	Mean	37,0 ^{a, b}	14,0 °	14,7	
15°-20° heavily	95% Confidence				
inclined	Interval	4,1	3,2	3,3	
	Mean	82,3 ^{a, b}	30,8 °	32,6	
	95% Confidence				
20°- 30° steep	Interval	10,4	6,8	7,6	
	Mean	49,3 ^{a, b}	19,7 °	18,0	
	95% Confidence				
< 30° very steep	Interval	13,9	6,3	6,0	

Real village boundaries are not available to test which method is best

Slope inclination as test criterion:

1000 m buffer differs from average buffer and land polygon

Average buffer and land polygon do nit differ significantly

^a 99% probability of significant differences between 1000m buffer and average buffer according to Mann- differ significantly Whitney U test.

^b 99% probability of significant differences between 1000m buffer and land polygon according to Mann-Whitney U test.

^c No significant difference between land polygon and average buffer according to Mann-Whitney U test.

Conclusion

The test result of non significant differences between adjusted buffer method and the village polygon method is surprising at first view

Possible reasons for non significant differences:

- Geomorphologic nature of the study area: three main landforms
- Slope classes within watersheds are similar
- Slope inclination in the surroundings of the villages is similar

Conclusion

Why is the village polygon method able to describe the land endowment and production capacity of villages, while buffers are not ?

➢Village polygons are build with a sound data base and according to best knowledge

> The land cover classes show, which area is really used for cropping. This information is not considered in the buffer methods

➢More information is used e.g. satellite images, digital elevation model and cost distances

≻Local knowledge is considered