GENETICS OF GROWTH TRAITS IN BOLIVIAN LLAMAS

M. Wurzinger, J. Delgado, M. Nürnberg, G. Ugarte, A. Valle Zárate, A. Stemmer, J. Sölkner

Material

2 types of llama

769 males 2568 females 51 males 330 females age of the animals: from 1 day to 10 years 4 communities

Aim of the Study

- growth curves for different body measurements and body weight
- differences between the two sexes
- differences between the two types
- differences between communities
- heritability and genetic correlations for body measurements and body weight

Non-linear Brody function

$$y(t) = a^{*}(1-b^{*}e^{(-k^{*}t)})$$

- y(t) = size or weight at given time t
- a = asymptotic size or weight at maturity
- b = proportional difference between a and birth size or weight
- k = rate of maturing

Comparison of the two sexes

Body length

Comparison of the two types Th'ampulli and Kh'ara

Body length

Comparison of the 4 communities

Height at withers

Body length

Body weight

Statistical model for heritabilities and genetic correlations

$$Y_{ijklmno} = \mu_i + F_{ij} + T_{ik} + S_{il} + YS_{im} + b_{1i}x + b_{2i}x^2 + a_{in} + pe_{in} + e_{ijklmno}$$

Estimates of heritabilities, genetic correlations and correlations between permanent environmental effects

Т

	BW	HW	CC	BL	AC
BW	0.36	0.66	0.83	0.87	0.82
HW	0.63	0.27	0.81	0.77	0.65
CC	0.64	0.99	0.15	0.63	0.94
BL	0.62	0.99	0.99	0.09	0.55
AC	0.65	0.77	0.75	0.86	0.11

Estimates of heritabilities, genetic correlations and correlations between permanent environmental effects

	BW	HW	CC	BL	AC
BW	0.36	0.66	0.83	0.87	0.82
HW	0.63	0.27	0.81	0.77	0.65
CC	0.64	0.99	0.15	0.63	0.94
BL	0.62	0.99	0.99	0.09	0.55
AC	0.65	0.77	0.75	0.86	0.11

Estimates of heritabilities, genetic correlations and correlations between permanent environmental effects

	BW	HW	CC	BL	AC
BW	0.36	0.66	0.83	0.87	0.82
HW	0.63	0.27	0.81	0.77	0.65
CC	0.64	0.99	0.15	0.63	0.94
BL	0.62	0.99	0.99	0.09	0.55
AC	0.65	0.77	0.75	0.86	0.11

Conclusions 1

- Differences between sexes for some traits
- Differences between the two types are small
- Differences between communities are small
- Growth traits are in the range of results given in the literature for other populations in South America
- Compared to animals in Europe the Ilamas are smaller and lighter

Conclusions 2

- First estimation of heritabilities with a reasonable number of animals
- Heritabilities are similar to estimates in other species