1.0 Introduction

- Sweetpotato yield is adversely affected by poor soil fertility in Mozambique.
- Many smallholder farmers lack access to inorganic fertilizers to improve soil fertility and crop yield.
- Use of cattle manure to improve soil fertility is limited because very few people have domestic animals to supply manure.
- Intercropping sweetpotato with legumes and phosphorus fertilization has the potential to improve soil fertility and the productivity of sweetpotatoes.

1.1 Objectives

- To evaluate the effectiveness of sweetpotato-legume intercropping and phosphorus (P) fertilization on soil fertility, productivity and nutritional quality of an orange-fleshed sweetpotato, variety Namanga bred for climatic conditions of Mozambique.

2.0 Materials and Methods

2.1 Materials:

(1) Orange-fleshed sweetpotato variety, Namanga. (2) Groundnut variety Bibiano Vermelho (3) Soybean variety Zamboano (4) Phosphorous (5) Urea (46% N) (6) Potassium sulphate

2.2 Experimental site

- Experiment was conducted at Umbeluzi research station (26°03’S & 32°15’E); 12 m. a. s. l., 32 km southwest of Maputo in Mozambique in the 2013/14, 2014/15 and 2015/2016 growing seasons.
- Soils were analyzed before planting: 0.025% total Nitrogen (N), 220 mg kg⁻¹ total phosphorus (P), 2.9 meq 100 g⁻¹ total K, 23.2 meq 100 g⁻¹ Cation exchange capacity (CEC) within 0-20cm depth of soil layer

2.3 The experimental design

- Design was a split plot
- Main plot treatment: (1) sole sweetpotato (sole SP), (2) sole groundnut (sole GN), (3) sole soybean (sole SB) (4) Sweetpotato + groundnut (SP+GN) (5) sweetpotato + soybean (SP+SB) (6) Soybean + groundnut (SB+GN) (7) Sweetpotato + groundnut + soybean (SP+GN+SB)
- Subplot treatment: Three P levels (0, 20, 40 kg ha⁻¹)
- Urea (50 kg N ha⁻¹) and K₂SO₄ (160 kg K ha⁻¹) applied uniformly across all treatments 20 days after planting.

2.4 Experimental layout

- Main plot had an area of 90 m² and each subplot had an area of 30 m².
- Sweetpotoot planted 90 cm between rows and 30 cm between plants.
- Groundnut planted 45 cm and 25 cm inter row and in row spacing respectively.
- Soybean planted 90 cm inrow spacing and 5 cm inrow spacing.

3.0 Measured parameters at the end of each season

- Soil: Total nitrogen (N), Total potassium (K), Cation Exchange capacity (CEC)
- Plant: Vine yield, Storage root yield, Percentage dry matter (%DM)

Acknowledgements

We would like to thank:

(1) DFID for funding this research through Scaling Up Sweetpotato through Agriculture and Nutrition (SUSTAIN) project implemented by International Potato Center.
(2) ETH Zurich World Food system center and Swiss-African research cooperation (SARECO).

4.0 Results

4.1 Soil total N

- At 0 kg P ha⁻¹, sole SP had higher % total N than SP+GN, SP+SB and SP+SB+GN in 2013/14 season but in 2015/2016 season the intercropping treatments had higher total N

4.2 Total K

- Sole SP treatment had the lowest soil total K compared to treatments with legumes by season

4.3 CEC

- Highest CEC was achieved by SP-SB intercropping at 40 kg P ha⁻¹ in all treatments

5.0 Conclusion

1. Phosphorus fertilisation is important for attainment of high storage roots, vine yield and dry matter content in sweetpotato.
2. Sweetpotato-legume intercropping is important for achieving high vine and storage root yield in sweetpotato as well as improving soil nutrients status and CEC

6.0 Recommendations

Farmers are recommended to intercrop sweetpotato and groundnut with additional 20 kg P ha⁻¹ for those with fertilizers access for high yield and maximum N fixation.