Evaluation of Effect of Ridging on the Rainwater Use Efficiency of Soybean Production in Northern Ghana

Jessica Lloyd*, Ivan Landers, Folkard Asch
University of Hohenheim, Garbenstraße 13, 70599 Stuttgart, Germany

*jessica.lloyd@uni-hohenheim.de

Introduction

As rainfall patterns become increasingly sporadic, it is imperative to create a system of maximum rainwater usage to assure an efficient cropping system. This is especially true in low-input farming systems, such as those found in Northern Ghana, that are already suffering from low crop yields.

Recently, soybean production is catching on in popularity in Northern Ghana as it is able to improve soil fertility. However, to reap the full benefits of the soybeans’ leguminous properties, soil moisture must be stabilised. Soil ridging promotes the soils’ ability to allow water to infiltrate, have improved permeability and water holding capacity - both necessary capabilities a soil must have in order to maintain consistent, proper moisture content.

Objective

- To determine if soil moisture content can be stabilised by soil ridging methods in the Chereponi District in Northern Ghana.
- To determine if stabilisation of soil moisture content can cause a significant difference in yield.

Conclusion

- Evidence found in this trial suggests that soil ridging was able to stabilise soil moisture content, as moisture percentages fluctuated less in the trough portion than non-ridged plots in reaction to rainfall events.
- Ridging provides little to no yield advantages in optimal conditions, but can provide benefits within sub-optimal soil conditions.

Methodology

- **Ridge Formation**
 - Ridges were 60 cm wide.
 - Two rows of soy were planted per ridge.
 - Troughs were 40 cm wide.
 - Ridges were raised approximately 10 cm above the soil’s natural level, with troughs dug 10 cm below to create a 20 cm ridge – trough height difference.
 - Each subplot consisted of 3 ridges.

- **Organic Matter**
 - Two types of organic matter applied at two different rates.
 - Manure – 2.5 t/ha and 5 t/ha.
 - Crop residue – 2.5 t/ha and 5 t/ha.

Acknowledgements

Support of the Anton und Petra Ehmann Stiftung, Ausgleichsstiftung Landwirtschaft und Umwelt, Stiftung Sabab Lou, Stiftung Fait Panis, Anaoko Women’s Group as well as the University of Hohenheim is gratefully acknowledged.