The project PICTA-KILL - Novel strategies for biological psyllid pest control

Linda Muskat1, Pascal Humbert1, Jürgen Gross2, Louisa Maria Görj2, Elisa Beitzen-Heineke3, Wilhelm Beitzen-Heineke3, Michael Przyklenk3, Cornelia Dippel4, Annette H. Jensen2, Annette B. Jensen2, Jürgen Ellenberg2, Anant V. Patel1

1 University of Applied Sciences, Department of Engineering and Mathematics, Bielefeld, Germany; 2 Julius Kühn-Institut Dossenheim, Germany; 3 BIOCARE Gesellschaft für biologische Schutzmittel mbH, Einbeck, Germany; 4 IS Insect Services GmbH, Berlin, Germany; 5 University of Copenhagen, Denmark

INTRODUCTION

Psyllid pests are distributed all over the world and cause damage in crop plants. Novel defense strategies against these insect pests are of international interest. Being the vector of Candidatus Phytoplasma mali, the infectious agent of apple proliferation, the psyllid Cacopsylla picta (Hemiptera; Psyllioidea) is responsible for an annual economic loss of a three-digit-million range in Europe. Because there are no direct measures to combat apple proliferation, the vector itself has to be controlled in order to protect the plants.

PROJECT STRUCTURE

REPEL/PUSH
- Potential Repellents
 - benzylalcohol
 - bornylacetate
 - mixtures

ATTRACT/PULL
- Potential Attractants
 - β-caryophyllene
 - ethylbenzoate
 - mixtures

KILL
- Entomopathogenic fungi
 - Pandora sp. (Entomophthorales) (UC)
 - Metarhizium sp.
 - Beauveria sp.
- Insecticides
 - natural
 - synthetic

FORMULATION
- Polymers and adjuvants
- Screening for formulation materials and methods (FHB)
- Methods for the production of (micro-)capsules applicable within a spray suspension or in combination with a trap
- Formulation (FHB)
- Scale-up (BIO, FHB)

FIRST RESULTS

- An entomopathogenic fungus of the genus Pandora sp. (Entomophthorales) was isolated from the target insect Cacopsylla sp.
- The pathogenicity of the isolated fungus was demonstrated for different Cacopsylla species
- The fungus can be formulated within Ca-alginenates and beads
- An computer-assisted evaluation method was developed for the quantification of discharged conidia

ACKNOWLEDGEMENTS

The project is supported by funds of the Federal Ministry of Food, Agriculture and Consumer Protection (BMELV) based on a decision of the Parliament of the Federal Republic of Germany via the Federal Office for Agriculture and Food (BLE) under the innovation support program.

Contact
Linda Muskat
FH Bielefeld, Interaktion 1, 33619 Bielefeld
muskat@fh-bielefeld.de

Contact
Linda Muskat
FH Bielefeld, Interaktion 1, 33619 Bielefeld
muskat@fh-bielefeld.de