The effect of *Pseudomonas* sp. RU47 and phosphorus fertilization on gene abundances and activities of phosphomonoesterase in the rhizosphere of tomato

Yulduzkhon Abdullaeva1, Dinah Nassal1, Marie Uksa1, Fabian Bergkemper2, Stefanie Schulz2, Michael Schloter & Ellen Kandeler2

1Institute of Soil Science and Land Evaluation, Soil Biology, University of Hohenheim, Stuttgart
2Research Unit for Comparative Microbiome Analyses, Helmholtz Zentrum München, Neuherberg

yuabdullaeva@gmail.com

INTRODUCTION

Low availability of phosphorus (P) in soils might be compensated by inoculation with PGPB that produce extracellular enzymes, such as acid and alkaline phosphomonoesterases.

Hypotheses

- Acid and alkaline phosphomonoesterase activities and phosphatase-encoding gene abundances are expected to be higher in rhizosphere than in bulk soil.
- Microbial inoculation with *Pseudomonas* sp. RU47 and P fertilization positively affects acid and alkaline phosphomonoesterase activities and gene abundances.

MATERIALS AND METHODS

Experimental Design

Plant Tomato (*Solanum lycopersicum* L. var. Mobil)

Duration 50 days

Conditions

- rhizoboxes (2.08 L) Luvisol (1) : sand (1)
- N, K, Mg, and Ca- fertilization
- greenhouse (o 20.1 °C, o 52.9 % humidity)

Replicates 5 (Σ 40 rhizoboxes)

Treatments

- P fertilization
- PGPB inoculation
- Bacterial mix unselectively cultivated microorganisms from soil
- Dead RU47 heat killed *Pseudomonas* sp. RU47 cells
- Viable RU47 living *Pseudomonas* sp. RU47 cells

Analyses

Enzyme assay (MUF) Marx et al. 2001

Quantitative PCR (16S, *phoD*, *phoN*, and *appA*) Bergkemper et al. 2016

RESULTS

ACID PHOSPHATASE ACTIVITY

ALKALINE PHOSPHATASE ACTIVITY

ALKALINE PHOSPHATASE GENE (phoD**)**

GENE RATIO – phoD: BACTERIAL 16S RNA

CONCLUSION and OUTLOOK

P availability in soil might influence RU47’s efficiency in P mineralization. The addition of dead or viable RU47 cells increased phosphatase activity in the rhizosphere. While the addition of dead RU47 cells might stimulate indigenous microbial activity (priming effect), increased PA by the addition of viable RU47 cells might cause by RU47 or interacting indigenous soil microbes. Since RU47 is mainly producing acid phosphatases in pure culture, we will extend our functional gene analyses to *phoN* and *appA* (acid phosphatases).

Acknowledgement: This project is funded by the European Commission within the 7th Framework Programme | Grant No. 312117.

Contribution of this poster is supported by AGRINATURA