Introduction

• Assessing the feasibility of an irrigation dam investment and optimizing expected returns require detailed ex-ante appraisal.

• Due to the inherently complex and uncertain consequences of irrigation dam investments and often severe data scarcity, traditional cost-benefit assessment methods face limitations.

• Stochastic Impact Evaluation (SIE; Luedeling and Shepherd 2016) attempts to overcome the particular challenges of evaluating investments in such contexts.

Research questions

• What are the costs, benefits and risks of an irrigation dam in the study area?

• What uncertain variables affect the intervention decisions of the dam?

• How will the dam affect local stakeholders and the environment?

Methodology

• Expert knowledge from 10 subject matter experts was elicited and used to develop a causal impact model.

• We applied the SIE approach, which allows assessing complex decision problems and considering uncertainty and variability in input variables (Luedeling et al. 2015).

Results

• Several interest groups were identified:

 Stakeholders:
 • Upstream villagers • Farmers further downstream
 • People displaced • Implementers
 • Downstream irrigators

• These groups’ net benefits are determined by:

 Costs:
 • Production • Watershed management
 • Dam construction • Health impacts
 • Compensation • Socio-cultural
 • Repair and maintenance • Environmental impact

• Several risk factors were identified:

 Benefits:
 • Irrigation (also to support rainfed prod.) • Compensation
 • Employment • Reduced flooding effect
 • Time saving • Erosion control
 • Other environ. benefits

 Risks:
 • Weather risk • Water diversion
 • Dam failure • Increase in cost
 • Use of dam water for urban supply • Decrease in output price
 • Delay in construction

Outlook

• Modeling of plausible ranges of decision outcomes for various stakeholders is in progress.

• Critical uncertainties will be identified by Value of Information analysis.