Dietary Diversity and Micronutrient Status of School Children in Chamwino and Kilosa Districts, Tanzania

VICTORIA GOWELE¹, JOYCE KINABO¹, CONSTANCE RYBAK², STEFAN SIEBER², KHAMALDIN DAUD MUTABAZI³, NYAMIZI BUNDALA¹, HANS KONRAD BIESALSKI⁴, WOLFGANG STUETZ⁴

¹Sokoine University of Agriculture, Food Technology, Nutrition and Consumer Sciences, Tanzania
²Leibniz Centre for Agricultural Landscape Research (ZALF), Inst. of Socio-Economics, Germany
³Sokoine University of Agriculture, School of Agric. Economics & Business Studies, Tanzania
⁴University of Hohenheim, Institute for Biological Chemistry and Nutrition, Germany

Abstract

Background: Childhood is a period of rapid growth, during this stage of life micronutrient deficiencies can lead to retarded growth, anaemia and reduced immune function. Poor feeding practices and limited dietary diversity are contributing factors to poor micronutrient status. Deficiencies of vitamin A, zinc and iron co-exist in malnourished children.

Methodology: The Scale-N study aims to improve nutritional and micronutrients status (vitamin A, iron, zinc) in school-children (5–10 years) in 2 villages in Chamwino and 2 villages in Kilosa districts, Tanzania (scale-N.org). During baseline study, 666 children were randomly recruited to obtain information on demographic characteristics, anthropometry, Household Dietary Diversity Score (HDDS), and to collect blood for the determination of haemoglobin (hemocue method) and micronutrient status (serum vitamin A, iron and zinc by enzyme-linked immunosorbent assay and spectrophotometric methods). Data are presented as means (SD) and prevalences and compared using ANOVA, and chi-squared test.

Results: The prevalence range of underweight and stunting were 11–17 % and 25–35 % with no significant differences between villages/districts. Anaemia, iron-, vitamin A deficiency and low serum zinc among children in the study villages showed a prevalence range of 19–69 %, 15–40 %, 8–19 %, and 20–49 % respectively. Children from villages of Kilosa had significantly higher prevalence of anaemia (59 and 68 % vs. 19 and 26 %) and iron deficiency (37 and 40 % vs. 19 and 15 %) than those of Dodoma.

The overall mean HDDS was 4.8 ±1.8. The households of Kilosa villages had higher HDDS than those in Dodoma (5.7 and 6.2 vs. 4.2 and 3.0, p < 0.001). The higher HDDS in Kilosa district contributed mainly by reported consumption of foods such as sugar, fats/oil and beverages. The least consumed food groups in both districts were meat/organ, eggs and milk products.

Conclusion: The higher diversity score consisting of food groups such as sugar, oil and beverages was associated with higher prevalence of anaemia and iron deficiencies. Pro vitamin A rich vegetables/fruits and animal based foods are highly recommended in order to improve children’s micronutrient status in the study villages.

The financial support of Scale-N project by the German Federal Ministry of Food and Agriculture (BMEL) is highly acknowledged.

Contact Address: Victoria Gowele, Sokoine University of Agriculture, Food Technology, Nutrition and Consumer Sciences, P.O. Box 3006, Morogoro, Tanzania, e-mail: vgowele@yahoo.co.uk
Keywords: Dietary diversity, iron, school children, vitamin A, zinc