Genetic and genomic resources for amaranth breeding to improve income and nutrition of resource-poor farmers

Roland Schafleitner¹, Hoa Thi Le², Ray-yu Yang¹, Yun-yin Hsiao¹, Yen-wei Wang¹, Andreas Gramzow³ and Fekadu Dinssa³
E-mail: roland.schafleitner@worldveg.org

¹World Vegetable Center, PO Box 42, Shanhua, Tainan 74199, Taiwan
²Plant Resources Center, Vietnam Academy of Agricultural Sciences, Hanoi, Vietnam
³The World Vegetable Center, Eastern and Southern Africa, Duluti, PO Box 10, Arusha, Tanzania

Amaranth: a highly nutritious grain and vegetable crop
- **C-4 plant**: more tolerant to heat and drought
- **Rapid growth**: vegetable harvest 3 weeks after sowing
- **Highly nutritious**: rich in protein, Fe and Ca
- **High value crop**: generates income for smallholder farmers

Constraints
- Short shelf life limits marketability of vegetable amaranth
- Disease and pest susceptibility restricts quality and yield
- Antinutrients (hydrocyanic acid and oxalic acid) may restrict fresh consumption
- Difficult access to amaranth biodiversity and lack of breeding tools restricts development of improved cultivars combining disease resistance with quality traits

APPROACHES

Improve access to biodiversity
Morphologic, agronomic and molecular germplasm characterization, disease and pest resistance screening, nutritional analysis

Breed improved varieties
Crossing techniques, hybridity markers, specialized populations for breeding and trait mapping

Broaden genetic diversity
Polyploidization

Extended shelf life of 4n plants
Germination rate of 4n plants

Acknowledgements: This research was funded by the Council of Agriculture, Taiwan and core donors of the World Vegetable Center: Republic of China (ROC), UK Department for International Development (DFID), United States Agency for International Development (USAID), Australian Centre for International Agricultural Research (ACIAR), Germany, Thailand, Philippines, Korea, and Japan.