Potential farm to landscape level impact and adoption of forage technologies in smallholder dairy production systems in Tanga, Tanzania

Birthe K. Paul1,2, Rolf Sommer3, Walter E. Mangesho4, Julius Bwire5, Johannes Schuler1, Hycenth T. Ndah5, Amos Omore5, Jeroen C.J. Grooth5

Livestock feeding and tradeoffs

- Lack of sufficient quantity and quality feed is one of the major productivity constraints for smallholder dairy farmers. Improved forages provide an opportunity for sustainable intensification.
- However, forage technologies will only be adopted if they contribute to whole farm performance, thus reducing tradeoffs between productivity, socio-economics and environment.
- Ex-ante impact assessment and scenario analysis can assist in prioritizing and targeting of development investments.

Lushoto, Tanzania

Study site is Lushoto, located in the Usambara Highlands of northeastern Tanzania. High soil erosion due to continuous cropping on steep slopes (Fig 2).

Keeping livestock is a common practice, complementing arable cropping. However small land sizes pose challenges to livestock feeding thus the bulk of the feed basket is constituted by low quality natural grasses (Fig 3).

What has been done in the past – the MilkIT project

Establishment of local and regional Innovation Platforms (IPs). IPs are a social learning method, building on collaboration between different stakeholders along the value chain (Fig 4).

Demonstration trials and IP members receiving planting materials of various forages, and agronomic data was collected (Fig 5).

Table showing participation of farmers in forage planting (above; from Maass 2015). SUA/CIAT MSc student Cyril Lissu collecting agronomic data in Napier-Desmodium intercropping trials in Ubitri and Mbuizi (below; pictures Cyril Lissu, SUA/CIAT).

Landscape IMAGES models; iii) Explore adoption potential of forage technologies using the QAToCA method; iv) Raise awareness among stakeholders to improve prioritization of interventions.

What needs to be done – the new BMZ/GIZ project

i) Analyze feed gaps and identify entry points for sustainable intensification; ii) Assess potential impact and tradeoffs of forage technologies at farm to landscape scale using FarmDESIGN and Landscape IMAGES models; iii) Explore adoption potential of forage technologies using the QAToCA method; iv) Raise awareness among stakeholders to improve prioritization of interventions.

Acknowledgements

This research is funded by a BMZ/GIZ small grant and IFAD, both under the CGIAR Research Program on Livestock and Fish http://livestockfish.cgiar.org/

References

1. Paul, B.K., Maass, B.L., Wassena, K., Ozbir, F., Dwane, G. (in press). Dairy development using local innovation platforms – when and how can they be useful? Livestock and Fish 

Figure 1. Livestock farmers and members of the local Innovation Platforms in Lushoto (Pictures An Nodenbärt, CIAT).

Figure 2. Map of the study site (left); hilly landscape in Lushoto where Sharifa Juma digs terraces planted with Napier grass to prevent erosion (right; picture Georgina Smith, CIAT).

Figure 3. Livestock feeding with natural collected forages (left; picture Rolf Sommer, CIAT); availability of feeds throughout the year in Ubitri village (right; from Mangesho et al. 2013).

Figure 4. Schematic illustration of linkages between IPs at different levels in Tanzania (left, from Paul et al. in press); Manyinya village IP meeting (left; picture Fred Wassena, CIAT).

Figure 5. Table showing participation of farmers in forage planting (above; from Maass 2015); SUA/CIAT MSc student Cyril Lissu collecting agronomic data in Napier-Desmodium intercropping trials in Ubitri and Mbuizi (below; pictures Cyril Lissu, SUA/CIAT).

Figure 5. Conceptual diagram of the feed gap analysis (left); schematic representation of landscape scale tradeoffs as analysed by the LandscapeIMAGES model (right; from Grooth & Rossing, 2011).