Agroforestry for Resilient Agroecosystems in the Mid-Hills of Nepal
Niels Schwab1,2, Udo Schickhoff2

Material
• Study area: Mid-Hills of Nepal, village ‘Kaule’, 15km NW of Kathmandu, 1850m a.s.l.
• Soil and vegetation sampling
• 3 Agroecosystems: A) Agroforestry-System (AF), mature, 15 years established
 B) System in transition to AF (for 2 years)
 C) Conventional (crop rotation) system

Questions:
1) Differences in soil properties? 2) Differences in phytodiversity?

Methods - Soil
Soil sampling: - Field samples and terrace riser samples, 32 samples each system (n=96)
 - At the lab: analyses for soil samples’ main parameters
 ➔ Comparison: ANOVA, Kruskal-Wallis test

Results - Soil
• significant differences: AF ↔ conventional system
 - pH
 - Al [µmol/g]
 - Total C, total N, SOM, electric conductivity, base saturation

Discussion - Soil:
• Although the transition process to agroforestry has been in progress for only 2 years in ‘B’ (transition land), soil parameters already reflect the shift to restoring farm soil fertility.
• Terrace risers’ soil parameters are not correlated with management ➔ validation of management’s influence on the fields’ soil conditions.

Methods - Vegetation
Vegetation sampling: - Crop, tree & shrub layer, 8 plots each system (= 24 plots), abundance & cover
 - Comparison of species richness (Kruskal-Wallis test)
 - Alpha-diversity: biodiversity measure, weighting for abundance and for dominant species (Jost 2007)

Results - Vegetation
Species richness:
• Significant higher number of species in both agroforestry and transition land compared to conventional land use system
• 3 most common species: Ficus nerifolia, Buddleja asiatica, Alnus nepalensis

Discussion - Vegetation:
• Species richness of agroforestry lands’ tree and shrub layers is higher compared to conventional lands’.
 ➔ AF: highest alpha-diversity
 ➔ Transition land: alpha-diversity resembles AF-system
 ➔ Dominance-weighting reduces differences between the three agroecosystems.

Conclusion: Population growth results in intensified land use in developing countries’ mountain areas, which is the case for the Mid-Hills of Nepal. Poor nutrient conditions and susceptibility to erosion characterize the region’s prevalent soils. These are influenced highly by management as the results show. Agroforestry systems offer farmers and their families an alternative to traditional farming that can be advantageous in terms of productivity, biodiversity, and ecosystem based services provided.

Notes:
1) Kaule e.V., Bonn, Germany - 2University of Hamburg, Institute of Geography, Germany - contact: nielschwab@gmx.net

Agroforestry (AF) land (red line) surrounded by conventional crop rotating system. AF land has been established by one farmer for 15 years.

Agroforestry system vs. Conventional crop rotation system