Reproductive performance of West African Dwarf goats fed with *Moringa oleifera*

Folasade Adeboyejo* and Simisola Odeyinka

Department of Animal sciences, Obafemi Awolowo University, Ile-Ife, Nigeria

*Current address: International Studies in Aquatic Tropical Ecology, University of Bremen, Germany

Email: shadex@uni-bremen.de

Background

West African Dwarf (WAD) goat is the most prolific goat species (Plate 1). A non-seasonal breeder with the possibility of kidding 5 times in 3 years. In most tropical countries, lack of genetic improvement and inadequate nutrition undermines WAD goats in expressing their full genetic and productivity potential. These result into high mortality rates in kids (50%) and low fecundity in adult females. A bid to improve WAD goat performance, calls for the exploration of alternative but nutritious feed sources such as *Moringa oleifera*, a multi-purpose plant (Plate 2). Hence, we evaluated the reproductive parameters of WAD does’ as influenced by *M. oleifera* during and after gestation and the performance of their resulting kids after parturition.

Approach

- **Grouping and Acclimatization**
 - Five treatments (T1 – T5) with 5 replicates
 - Increasing proportion of *M. oleifera* in relation to *G. asepum* at 0%, 25%, 50%, 75%, and 100% across T1 to T5

- **Feeding**
 - Treatment: based on treatment diet composition and 4% body weight of does’
 - 100g of concentrate per doe per day
 - 0.4mls of progesterone per doe, every other day for 6 consecutive days

- **Oestrus synchronization**
 - 4mls of progesterone per doe, every other day for 6 consecutive days
 - Introduction of bucks, 24 hours post hormonal administration

- **Statistical Analysis:** SAS 2008

- **Reproductive parameter**
 - Conception rate, litter size at birth and gestation length in does
 - Birth weight, milk uptake and weaning weight of kids

- **Analysis**
 - Chemical and nutritional analysis of the forage plants used as experimental diet
 - Chemical and nutritional analysis of the forage plants used as alternative plant (Plate 2).

Result

We used the data of does’ which conceived during their next ovaulation after estrus synchronization. Of the experimental does’ 72% conceived shortly after hormonal withdrawal (Fig 1). Majority of the conceived does’ were in treatments fed with >50% M. oleifera (Fig 2) with the rest of the does conceiving during their second ovulation. Early conception confers higher fecundity on the does in T3 – T5 as conception rate influences kidding interval.

Conception rate among treatments increased with increasing levels of *M. oleifera* in does’ diet (Fig 2), with T5 having the highest rate. Higher conception rate within T3 – T5, indicate that *M. oleifera* is rich in nutrients (protein and energy) to enhance implantation and development of foetus (Fig 3) compared to *G. asepum* atpicum. As analysis of the feed intake by the does’ showed that there was a significant difference (P<0.05) in crude protein intake (CPi) among different treatments, with T1 having the lowest (120.1g/day). Average birth weight of kids from does fed with >50% M. oleifera in their diet was 300gms higher than other groups and 100gms higher than average recorded birth weight for WAD goats. Highest weaning weight of kids >5kg were recorded at 3 months in treatments fed with >75% M. oleifera. This was found to be due to persistency in milk production in does’ of this group (T4 and T5).

Conclusion

- Inclusion of high levels of *M. oleifera* in WAD does’ diet (50% and above) do enhance higher conception rate. This indicates better fecundity and invariably improves kidding interval on the long term basis.
- Higher birth weight of kids from WAD goats above the present recorded averages of 1200g is attainable.
- This will aid better development of kids which will encourage early weaning, hence improved productivity.

References

Figures

- Fig 1: Fecundity rate within the entire experimental does.
- Fig 2: Concept rate in does of different treatments based on data composition of *G. aspermum* and *M. oleifera* respectively. T1 = 100%, T2 = 75%, T3 = 50%, T4 = 25%, T5 = 0%
- Fig 3: Indicates a direct relationship between conception rate and average daily CP intake by does’ in different treatment.

Acknowledgement

We wish to thank Dan Carlsberg Caragegie Scholarship Board (DCC) and the scholarship disbursing arm at the Center For Gender and Social Policy Studies, Obafemi Awolowo University Ile-Ife. Special thanks to Bessie Solomon, Kamundi Akhibi, Adewuyi Oluwaseun and Dr. Oyedeji for your assistance during the course of this study.