The Effect of Integrating Forage Legumes in Smallholder Crop/Livestock Farming Systems on Food, Fodder and Animal Performance

JOLLY KABIRIZI1, DENIS MPAIRWE2, DAVID MUTETIKA2

1National Agricultural Research Organization (NARO), Animal Production, Uganda
2Makerere University, Faculty of Agriculture, Department of Animal Science, Uganda

Abstract

In a farmer participatory process, farmers in Uganda identified intensive dairy cattle farming based on improved breeds and Napier grass (*Pennisetum purpureum*) basal forage as a potentially viable enterprise to enhance income of resource poor households. Inadequate year-round fodder supply partly due to land shortage is a major constraint in this production system. Napier grass productivity declines during the dry season resulting in a decline in animal performance and household income. To alleviate this concern, a participatory on-farm study on maize/*Lablab purpureus* (lablab) intercropping was done to evaluate the effects of intercropping lablab with maize crop on stover and maize grain production and document farmers’ experiences in testing food/fodder technologies.

The study results showed that fodder dry matter and maize grain yields and cob size were increased by 26, 7 and 6%, respectively in maize/lablab intercropping systems compared to maize monocrops (4,373 kg ha⁻¹ yr⁻¹; 2,912 kg ha⁻¹ yr⁻¹; 134 g respectively). Mean percentage crude protein (CP) content of maize/lablab residues was higher (8.4% CP) in intercrops than monocrops (4.0% CP). Maize/lablab intercropping increased phosphorus and calcium content compared to maize monocrop. Cows that were offered residues from maize/lablab intercrop in addition to Napier grass as a basal diet during the dry season produced about 13% more milk than cows on sole Napier grass (7.7 ± 0.02 litres cow⁻¹ day⁻¹).

Major benefits identified by farmers during a participatory technology evaluation survey were: weeds were suppressed by lablab plants thereby reducing on labour and cost required to weed the fields; lablab plants conserved soil moisture; maize stover yield and quality, food security and household income improved.

Major lesson learnt from the study was that testing forage legume/food technologies with resource poor farmers is a very big challenge. It requires patience and institutional support. However, it improves adoption of the innovations.

This study revealed that lablab could be introduced as a component crop in an intercropping with maize to improve fodder and food availability.

Keywords: Fodder, food, forage legume, intensive smallholder dairy farms

Contact Address: Jolly Kabirizi, National Agricultural Research Organization (NARO), Animal Production, P.O. Box 7084, none Kampala, Uganda, e-mail: jkabirizi@hotmail.com