Identification of porcine hernia inguinalis/scrotalis using single nucleotide polymorphism in INSL3 and BAX genes

Kesinee Gatphayak1*, Rangsun Charoensook1,3, Sumalee Taesoongnern1, Supalerk Laiprawat1, Nucha Simasatikul1, Tussnee Apichartsrungkoon1, Ratchaneewan Kumphakarm2, Bertram Brenig3, Christoph Knorr3

1 Department of Animal Science, Agriculture Faculty, Chiangmai University (Thailand)
2 Department of Mathematics and Statistics, Science Faculty, Maejo University (Thailand)
3 Institute of Veterinary Medicine, Georg-August-University Göttingen, (Germany)

Abstract
Scrotal hernia is a congenital defect of great concern to pig producers that leads to economic loss and poor animal welfare. Several candidate genes have been proposed to be causative for the disorder. This study focused on the analysis of single nucleotide polymorphisms in the genes encoding the Leydig insulin-like hormone (INSL3) and the BCL2-associated X protein (BAX). INSL3 has recently been mapped to SSC2q12-q13 and BAX to SSC6q21. In total, 250 bp in INSL3 (promotor region) and 416 bp in BAX (Intron1) were comparatively sequenced using affected and unaffected commercial pigs as well as autochthonous Thai pigs. PCR-RFLP was used to screen SNPG-224A (INSL3) and C119T (BAX). A total of 212 commercial pigs (179 unaffected (u) and 33 herniated (h) pigs) were used for INSL3 genotyping. Allele frequency estimations revealed no significant differences between the two phenotypes at this loci (G_u = 0.97; A_u = 0.03; G_h = 0.91; A_h = 0.09) indicating that this mutation cannot be used to identify the disease. Interestingly, the allele frequency for G in Thai native pigs (n=7) was 0.07. It appears that the breed differences exist in the INSL3 gene. Screening of BAX was done in 151 commercial pigs (125 unaffected and 26 herniated pigs) showing significant differences in allele frequencies between unaffected and herniated pigs (C:T = 0.62:0.38 and 0.83:0.17) (p < 0.01). Allele C in Thai native pigs (n=7) was 1.00. Currently, further mutations in the regulatory and coding regions of BAX are identified to assess their possible role in this congenital disorder.

Keywords: INSL3, BAX, Porcine hernia inguinalis

Introduction
The Foerderverein Biotechnologieforschung der Deutschen Schweineproduktion (FBF) reported a frequency of herniated pigs with about 2% in Germany. In Thailand, hernia inguinalis/scrotalis is an economical problem for Thai pig breeders. The frequencies of herniated animals ranged from 1% (industrial pig farms) to 5% in small-sized farms (Gatphayak et al., 2005). A genome scan with DNA-markers and affected siblings revealed an association on chromosome 3,6,7,12

*Contact Address: Kesinee Gatphayak, Chiangmai University, Department of Animal Science, Huai-Keaw Road, 50200 Chiangmai, Thailand, e-mail: k.gat@chiangmai.ac.th
and 15 with the hernia phenotype (Borneman-Kolatzki, 2004). Moreover, Grindflek et al. (2006) reported the QTLs regions of inguinal hernia in Chromosome 1,2,5,6,15,17 and SSCX. Several candidate genes in this QTLs regions have been proposed to be causative for the disorder such as COL9A1, ESR1, INSL3, CGRP, MIS, BAX, HOXB9 and HOXB5. This study focused on the analysis of single nucleotide polymorphisms in the genes encoding the Leydig insulin-like hormone (INSL3; G-224A) (Knorr et al., 2004) and the BCL2-associated X protein (BAX; C119T) (Laenoi et al., 2006) in commercial pigs in Thailand.

Materials and methods

In total, 250 bp in INSL3 (promotor region) and 416 bp in BAX (Intron1) were comparatively sequenced using affected and un-affected commercial pigs as well as autochthonous Thai pigs. PCR-RFLP was used to screen SNP-G-224A (INSL3) and C119T (BAX). A total of 212 commercial pigs (179 unaffected (u) and 33 herniated (h) pigs) were used for INSL3 genotyping. Screening of BAX was done in 151 commercial pigs (125 unaffected and 26 herniated pigs). Thai native pig (n=7) were used for genotyping in both genes. Primer sequences used for amplification DNA fragments for SNPs screen shown in table1.

Table 1. Primer used in this study.

<table>
<thead>
<tr>
<th>Primer Name</th>
<th>Primer Sequence (5'→ 3')</th>
<th>PCR product</th>
<th>Tm (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAX SNP-2 for</td>
<td>TCA GTT CAT CTA GCA GGG AC</td>
<td>416 bp</td>
<td>61.1</td>
</tr>
<tr>
<td>BAX SNP-2 rev</td>
<td>CCATGT TAC TGT CCA GTT CAT C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INSL3 -for</td>
<td>GTC TAC TCT TGT ATA GAT GA</td>
<td>250 bp</td>
<td>49.7</td>
</tr>
<tr>
<td>INSL3 -rev</td>
<td>AGA GCA TTC CCA AAG GAC</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The RFLP reactions were performed according to the manufacturer (NEB, USA) with the respective restriction enzymes (HpyCH4 IV and EarI) for overnight at 37 °C in a volume of 30 μl. The digested products were subsequently separated on 1% agarose gel containing ethidium bromide.

Result and discussion

SNPG-224A (INSL3), 250 bp PCR fragment was amplified by INSL3 primer combination with HpyCH4 IV digestion. Allele G has recognition site for HpyCH4 IV and showed 2 bands after digestion (fragments 153 and 97 bp), where as allele A has no recognition site for HpyCH4 IV and showed an undigested PCR product (Figure 1). SNPC-119T (BAX), a 416 bp PCR fragment was amplified by BAX-SNP2 primer combination with EarI digestion. Two alleles could be distinguished. Allele T has no recognition site for EarI and shows an undigested PCR product, whereas allele C has recognition site for EarI and shows the fragments 120 and 296 bp (Figure 2).

Allele frequency estimations of INSL3 genotyping revealed no significant differences between the two phenotypes at this loci (G_u = 0.97; A_u = 0.03; G_h = 0.91; A_h = 0.09) indicating that this mutation cannot be used to identify the disease. Interestingly, the allele frequency for G in Thai native pigs (n=7) was 0.07. It appears that the breed differences exist in the INSL3 gene. Screening of the SNP in BAX gene showing significant differences in allele frequencies between unafected and herniated pigs (C:T = 0.62:0.38 and 0.83:0.17) (p < 0.01). Allele C in Thai native pigs (n=7) was 1.00.
Although the SNP in BAX gene is locate in the intronic region, it is possible that it might affect the splice process and that are alterations of alternative splicing lead to disease. In human, BAX gene mutation in the promoter (G 125A) was associated with lower BAX mRNA and protein level in chronic lymphocytic leukemia patients (Moshynska et al., 2005). The study of the biological role of the BAX protein is necessary to conduct a potential function of the characterized SNP. Further mutations in the regulatory and coding regions of BAX are identified to assess their possible role in this congenital disorder.

References