Nitrogen Fixation and Balance in Burned Versus Mulched *Mucuna pruriens* Var. *utilis* and *Pueraria phaseoloides* Relay Maize Cropping Systems

Stefan Hauser

International Institute of Tropical Agriculture, Humid Forest Eco-regional Center, Cameroon

Abstract

The cover crops *Mucuna pruriens* var. *utilis* and *Pueraria phaseoloides* are gaining importance in annual sole maize cropping and horticultural systems in the humid forest zone of West and Central Africa. Their contribution to the N balance of a sole maize relay cropping system was estimated. Over four consecutive years (1998 to 2001), amounts of N in 8–9 months old aboveground *M. pruriens*, *P. phaseoloides* and natural fallow biomass and litter were determined. In all years fallow biomass was either burned or retained as mulch and a sole maize crop was grown. Maize aboveground N-accumulation and N-export with grain was determined. The amount of N$_2$-fixed was estimated with the N difference method. In 1998, 1999, and 2000, nitrogen content in biomass of *M. pruriens* and *P. phaseoloides* fallow was higher than in natural fallow. In 2000 and 2001 fallow biomass in previously burned plots contained less N than when biomass had been retained. There was no fallow-type × biomass management interaction. Maize N uptake was higher in the biomass burned treatments in 1998, yet thereafter higher in the biomass retained treatments. Fallow type had only in 1999 an effect with highest maize N uptake in the *P. phaseoloides* system, followed by the *M. pruriens* system and the natural regrowth. The estimated amounts of N$_2$-fixed were higher in the *P. phaseoloides* system; biomass management had no effect. Nitrogen export with maize grain was highest in the *P. phaseoloides* system, followed by the *M. pruriens* system; biomass management had no effect across years. Nitrogen uptake into the aboveground maize biomass and N export with grains was balanced by the amount of N in fallow biomass and litter in all systems where biomass was retained. The amount of N$_2$-fixed did not balance the amount taken up by the maize. In the *M. pruriens* system the N exported with grains was not balanced by N$_2$-fixation. Only the *P. phaseoloides* system had a positive balance of N export in grain versus the amount of N$_2$-fixed.

Keywords: Cameroon, cover crop, maize, *Mucuna pruriens*, N balance, *Pueraria phaseoloides*, symbiotic N fixation, Ultisol

Contact Address: Stefan Hauser, International Institute of Tropical Agriculture, Humid Forest Eco-regional Center, Cameroon, e-mail: s.hauser@cgiar.org